Xuemei Jin, Long Chen, Yuelan Yang, Rongshao Tan, Chunjie Jiang
{"title":"Adverse Effects of Nrf2 in Different Organs and the Related Diseases.","authors":"Xuemei Jin, Long Chen, Yuelan Yang, Rongshao Tan, Chunjie Jiang","doi":"10.1089/ars.2024.0586","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. <b><i>Recent Advances:</i></b> While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. <b><i>Critical Issues:</i></b> This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. <b><i>Future Directions:</i></b> Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0586","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. Recent Advances: While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. Critical Issues: This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. Future Directions: Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology