Spectral Data Fusion From Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) Analyzers for Improved Detection of Cerium in a Simulated Dispersal Accident.
Janos I Braun, Paige E Anderson, Justin I Borrero Negrón, Kyle C Hartig, Ashwin P Rao
{"title":"Spectral Data Fusion From Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) Analyzers for Improved Detection of Cerium in a Simulated Dispersal Accident.","authors":"Janos I Braun, Paige E Anderson, Justin I Borrero Negrón, Kyle C Hartig, Ashwin P Rao","doi":"10.1177/00037028241298305","DOIUrl":null,"url":null,"abstract":"<p><p>This work implements a mid-level data fusion methodology on spectral data from handheld X-ray fluorescence and laser-induced breakdown spectroscopy analyzers to quantify plutonium surrogate (CeO<math><msub><mrow></mrow><mn>2</mn></msub></math>) contamination in soil samples for the first time. Spectral data from each analyzer were used independently to train supervised machine learning regressions to predict Ce concentration. Fused features from both data sets were then used to train the same models, comparing prediction performance by evaluating model precision and sensitivity. Fusing principal component scores from the two sensors yielded an order of magnitude improvement in precision and sensitivity of predictions made with an artificial neural network, compared to predictions made by models trained on independent sensor data. Lastly, a boosted ensemble trained on the fused spectral features yielded an ideal predictor with root-mean-squared error on the order of 10<sup>-6</sup> and calculated limit of detection order 10<sup>-5</sup> wt<math><mi>%</mi></math>.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241298305"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241298305","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This work implements a mid-level data fusion methodology on spectral data from handheld X-ray fluorescence and laser-induced breakdown spectroscopy analyzers to quantify plutonium surrogate (CeO) contamination in soil samples for the first time. Spectral data from each analyzer were used independently to train supervised machine learning regressions to predict Ce concentration. Fused features from both data sets were then used to train the same models, comparing prediction performance by evaluating model precision and sensitivity. Fusing principal component scores from the two sensors yielded an order of magnitude improvement in precision and sensitivity of predictions made with an artificial neural network, compared to predictions made by models trained on independent sensor data. Lastly, a boosted ensemble trained on the fused spectral features yielded an ideal predictor with root-mean-squared error on the order of 10-6 and calculated limit of detection order 10-5 wt.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”