{"title":"An effective heuristic for developing hybrid feature selection in high dimensional and low sample size datasets.","authors":"Hyunseok Shin, Sejong Oh","doi":"10.1186/s12859-024-06017-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-dimensional datasets with low sample sizes (HDLSS) are pivotal in the fields of biology and bioinformatics. One of core objective of HDLSS is to select most informative features and discarding redundant or irrelevant features. This is particularly crucial in bioinformatics, where accurate feature (gene) selection can lead to breakthroughs in drug development and provide insights into disease diagnostics. Despite its importance, identifying optimal features is still a significant challenge in HDLSS.</p><p><strong>Results: </strong>To address this challenge, we propose an effective feature selection method that combines gradual permutation filtering with a heuristic tribrid search strategy, specifically tailored for HDLSS contexts. The proposed method considers inter-feature interactions and leverages feature rankings during the search process. In addition, a new performance metric for the HDLSS that evaluates both the number and quality of selected features is suggested. Through the comparison of the benchmark dataset with existing methods, the proposed method reduced the average number of selected features from 37.8 to 5.5 and improved the performance of the prediction model, based on the selected features, from 0.855 to 0.927.</p><p><strong>Conclusions: </strong>The proposed method effectively selects a small number of important features and achieves high prediction performance.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"390"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06017-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: High-dimensional datasets with low sample sizes (HDLSS) are pivotal in the fields of biology and bioinformatics. One of core objective of HDLSS is to select most informative features and discarding redundant or irrelevant features. This is particularly crucial in bioinformatics, where accurate feature (gene) selection can lead to breakthroughs in drug development and provide insights into disease diagnostics. Despite its importance, identifying optimal features is still a significant challenge in HDLSS.
Results: To address this challenge, we propose an effective feature selection method that combines gradual permutation filtering with a heuristic tribrid search strategy, specifically tailored for HDLSS contexts. The proposed method considers inter-feature interactions and leverages feature rankings during the search process. In addition, a new performance metric for the HDLSS that evaluates both the number and quality of selected features is suggested. Through the comparison of the benchmark dataset with existing methods, the proposed method reduced the average number of selected features from 37.8 to 5.5 and improved the performance of the prediction model, based on the selected features, from 0.855 to 0.927.
Conclusions: The proposed method effectively selects a small number of important features and achieves high prediction performance.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.