Xintian Yang, Tongxin Li, Qin Su, Yaling Liu, Chenxi Kang, Yong Lyu, Lina Zhao, Yongzhan Nie, Yanglin Pan
{"title":"Application of large language models in disease diagnosis and treatment.","authors":"Xintian Yang, Tongxin Li, Qin Su, Yaling Liu, Chenxi Kang, Yong Lyu, Lina Zhao, Yongzhan Nie, Yanglin Pan","doi":"10.1097/CM9.0000000000003456","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Large language models (LLMs) such as ChatGPT, Claude, Llama, and Qwen are emerging as transformative technologies for the diagnosis and treatment of various diseases. With their exceptional long-context reasoning capabilities, LLMs are proficient in clinically relevant tasks, particularly in medical text analysis and interactive dialogue. They can enhance diagnostic accuracy by processing vast amounts of patient data and medical literature and have demonstrated their utility in diagnosing common diseases and facilitating the identification of rare diseases by recognizing subtle patterns in symptoms and test results. Building on their image-recognition abilities, multimodal LLMs (MLLMs) show promising potential for diagnosis based on radiography, chest computed tomography (CT), electrocardiography (ECG), and common pathological images. These models can also assist in treatment planning by suggesting evidence-based interventions and improving clinical decision support systems through integrated analysis of patient records. Despite these promising developments, significant challenges persist regarding the use of LLMs in medicine, including concerns regarding algorithmic bias, the potential for hallucinations, and the need for rigorous clinical validation. Ethical considerations also underscore the importance of maintaining the function of oversight in clinical practice. This paper highlights the rapid advancements in research on the diagnostic and therapeutic applications of LLMs across different medical disciplines and emphasizes the importance of policymaking, ethical supervision, and multidisciplinary collaboration in promoting more effective and safer clinical applications of LLMs. Future directions include the integration of proprietary clinical knowledge, the investigation of open-source and customized models, and the evaluation of real-time effects in clinical diagnosis and treatment practices.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Large language models (LLMs) such as ChatGPT, Claude, Llama, and Qwen are emerging as transformative technologies for the diagnosis and treatment of various diseases. With their exceptional long-context reasoning capabilities, LLMs are proficient in clinically relevant tasks, particularly in medical text analysis and interactive dialogue. They can enhance diagnostic accuracy by processing vast amounts of patient data and medical literature and have demonstrated their utility in diagnosing common diseases and facilitating the identification of rare diseases by recognizing subtle patterns in symptoms and test results. Building on their image-recognition abilities, multimodal LLMs (MLLMs) show promising potential for diagnosis based on radiography, chest computed tomography (CT), electrocardiography (ECG), and common pathological images. These models can also assist in treatment planning by suggesting evidence-based interventions and improving clinical decision support systems through integrated analysis of patient records. Despite these promising developments, significant challenges persist regarding the use of LLMs in medicine, including concerns regarding algorithmic bias, the potential for hallucinations, and the need for rigorous clinical validation. Ethical considerations also underscore the importance of maintaining the function of oversight in clinical practice. This paper highlights the rapid advancements in research on the diagnostic and therapeutic applications of LLMs across different medical disciplines and emphasizes the importance of policymaking, ethical supervision, and multidisciplinary collaboration in promoting more effective and safer clinical applications of LLMs. Future directions include the integration of proprietary clinical knowledge, the investigation of open-source and customized models, and the evaluation of real-time effects in clinical diagnosis and treatment practices.
期刊介绍:
The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.