Chen Chu, Luyao Ye, Qingqing Chi, Jiangnan He, Jianfeng Zhu
{"title":"Proteomic analysis of effects of 1% atropine in myopia therapy in Guinea pigs.","authors":"Chen Chu, Luyao Ye, Qingqing Chi, Jiangnan He, Jianfeng Zhu","doi":"10.1016/j.exer.2024.110224","DOIUrl":null,"url":null,"abstract":"<p><p>Myopia is a significant global public health issue. Key interventions for managing myopia include atropine treatment, optical correction, and surgical methods. This study focused on evaluating alterations in retinal protein expression after atropine therapy for myopia. Guinea pigs were randomly divided into four groups: control (CON), monocular form-deprivation myopia (FDM), FDM with 2-week atropine treatment (FDM + ATR), and atropine-only treatment (ATR). After two weeks of FDM induction, the FDM group showed significant differences in refractive error and increased axial lengths. In comparing the retinas of myopic and normal eyes, 30 proteins were found to have increased expression, while 8 proteins showed decreased expression. Atropine-treated retinas exhibited 73 proteins with increased expression and 29 proteins with decreased expression compared to the normal eyes. A total of 11 regulated proteins overlapped between the FDM + ATR vs FDM and FDM vs CON groups. IPA analysis indicates significant alterations in amino acid metabolism, energy production, post-translational modification, small molecule biochemistry, and free radical scavenging. Our study identifies retinal protein changes in myopic guinea pigs and in guinea pigs treated with atropine after myopia. These proteins could serve as potential targets for atropine treatment of myopia.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"251 ","pages":"110224"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110224","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myopia is a significant global public health issue. Key interventions for managing myopia include atropine treatment, optical correction, and surgical methods. This study focused on evaluating alterations in retinal protein expression after atropine therapy for myopia. Guinea pigs were randomly divided into four groups: control (CON), monocular form-deprivation myopia (FDM), FDM with 2-week atropine treatment (FDM + ATR), and atropine-only treatment (ATR). After two weeks of FDM induction, the FDM group showed significant differences in refractive error and increased axial lengths. In comparing the retinas of myopic and normal eyes, 30 proteins were found to have increased expression, while 8 proteins showed decreased expression. Atropine-treated retinas exhibited 73 proteins with increased expression and 29 proteins with decreased expression compared to the normal eyes. A total of 11 regulated proteins overlapped between the FDM + ATR vs FDM and FDM vs CON groups. IPA analysis indicates significant alterations in amino acid metabolism, energy production, post-translational modification, small molecule biochemistry, and free radical scavenging. Our study identifies retinal protein changes in myopic guinea pigs and in guinea pigs treated with atropine after myopia. These proteins could serve as potential targets for atropine treatment of myopia.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.