Dongbo Li, Awn Abbas, Nanxin Li, Chao Li, Xiaoyang Ai, Lian Chen, Dongmei Dai, Gang Shu, Juchun Lin, Wei Zhang, Guangneng Peng, Haohuan Li, Funeng Xu, Hualin Fu
{"title":"Injectable and In Situ Phospholipid-Based Phase Separation Gel for Sustained Delivery of Altrenogest.","authors":"Dongbo Li, Awn Abbas, Nanxin Li, Chao Li, Xiaoyang Ai, Lian Chen, Dongmei Dai, Gang Shu, Juchun Lin, Wei Zhang, Guangneng Peng, Haohuan Li, Funeng Xu, Hualin Fu","doi":"10.3390/gels10120847","DOIUrl":null,"url":null,"abstract":"<p><p>Altrenogest is a key regulatory hormone for intensive and batch management of reserve sows in breeding farms. As a synthetic hormone, altrenogest could make ovaries stay at the initial stage of follicles and inhibit estrus and ovulation in animals. However, the currently used oral altrenogest solution needs to be administered continuously every day for more than two weeks in clinical practice. In this study we developed a phospholipid-based injectable gel carrying altrenogest to decrease the number of administrations, sustain release of the drug, and enhance therapeutic efficacy for clinical use. The altrenogest gel had a viscosity of 100 cP before phase transition and over 1,000,000 cP after phase transition. In vitro, altrenogest can be continuously released from gel for over two weeks. The pharmacokinetic results showed that the AUC <sub>(0-∞)</sub> of the altrenogest gel was almost double that of the altrenogest solution. The MRT <sub>(0-∞)</sub> was 40.92 ± 7.21 h and the t<sub>1/2</sub> of the altrenogest gel was 80.03 ± 20.79 h. The altrenogest gel demonstrated excellent fluidity, ease of injectability, high drug-loading capacity, and appropriate sustained-release characteristics both in vitro and in vivo, making it a potential drug delivery system for swine production.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10120847","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Altrenogest is a key regulatory hormone for intensive and batch management of reserve sows in breeding farms. As a synthetic hormone, altrenogest could make ovaries stay at the initial stage of follicles and inhibit estrus and ovulation in animals. However, the currently used oral altrenogest solution needs to be administered continuously every day for more than two weeks in clinical practice. In this study we developed a phospholipid-based injectable gel carrying altrenogest to decrease the number of administrations, sustain release of the drug, and enhance therapeutic efficacy for clinical use. The altrenogest gel had a viscosity of 100 cP before phase transition and over 1,000,000 cP after phase transition. In vitro, altrenogest can be continuously released from gel for over two weeks. The pharmacokinetic results showed that the AUC (0-∞) of the altrenogest gel was almost double that of the altrenogest solution. The MRT (0-∞) was 40.92 ± 7.21 h and the t1/2 of the altrenogest gel was 80.03 ± 20.79 h. The altrenogest gel demonstrated excellent fluidity, ease of injectability, high drug-loading capacity, and appropriate sustained-release characteristics both in vitro and in vivo, making it a potential drug delivery system for swine production.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.