{"title":"BiGM-lncLoc: Bi-level Multi-Graph Meta-Learning for Predicting Cell-Specific Long Noncoding RNAs Subcellular Localization.","authors":"Xi Deng, Lin Liu","doi":"10.1007/s12539-024-00679-y","DOIUrl":null,"url":null,"abstract":"<p><p>The precise spatiotemporal expression of long noncoding RNAs (lncRNAs) plays a pivotal role in biological regulation, and aberrant expression of lncRNAs in different subcellular localizations has been intricately linked to the onset and progression of a variety of cancers. Computational methods provide effective means for predicting lncRNA subcellular localization, but current studies either ignore cell line and tissue specificity or the correlation and shared information among cell lines. In this study, we propose a novel approach, BiGM-lncLoc, treating the prediction of lncRNA subcellular localization across cell lines as a multi-graph meta-learning task. Our investigation involves two categories of data: the localization data of nucleotide sequences in different cell lines and cell line expression data. BiGM-lncLoc comprises a cell line-specific optimization network learning specific knowledge from cell line expression data and a graph neural network optimized across cell lines. Subsequently, the specific and shared knowledge acquired through bi-level optimization is applied to a new cell-line prediction task without the need for re-training or fine-tuning. Additionally, through key feature analysis of the impact of different nucleotide combinations on the model, we confirm the necessity of cell line-specific studies based on correlation analysis. Finally, experiments conducted on various cell lines with different data sizes indicate that BiGM-lncLoc outperforms other methods in terms of prediction accuracy, with an average accuracy of 97.7%. After removing overlapping samples to ensure data independence for each cell line, the accuracy ranged from 82.4% to 94.7%, still surpassing existing models. Our code can be found at https://github.com/BioCL1/BiGM-lncLoc .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00679-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise spatiotemporal expression of long noncoding RNAs (lncRNAs) plays a pivotal role in biological regulation, and aberrant expression of lncRNAs in different subcellular localizations has been intricately linked to the onset and progression of a variety of cancers. Computational methods provide effective means for predicting lncRNA subcellular localization, but current studies either ignore cell line and tissue specificity or the correlation and shared information among cell lines. In this study, we propose a novel approach, BiGM-lncLoc, treating the prediction of lncRNA subcellular localization across cell lines as a multi-graph meta-learning task. Our investigation involves two categories of data: the localization data of nucleotide sequences in different cell lines and cell line expression data. BiGM-lncLoc comprises a cell line-specific optimization network learning specific knowledge from cell line expression data and a graph neural network optimized across cell lines. Subsequently, the specific and shared knowledge acquired through bi-level optimization is applied to a new cell-line prediction task without the need for re-training or fine-tuning. Additionally, through key feature analysis of the impact of different nucleotide combinations on the model, we confirm the necessity of cell line-specific studies based on correlation analysis. Finally, experiments conducted on various cell lines with different data sizes indicate that BiGM-lncLoc outperforms other methods in terms of prediction accuracy, with an average accuracy of 97.7%. After removing overlapping samples to ensure data independence for each cell line, the accuracy ranged from 82.4% to 94.7%, still surpassing existing models. Our code can be found at https://github.com/BioCL1/BiGM-lncLoc .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.