Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: performance and mechanisms.

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of biotechnology Pub Date : 2024-12-24 DOI:10.1016/j.jbiotec.2024.12.009
Ting Wei, Hong Li, Yuyao Wang, Ming Chi, Junkang Guo, Honglei Jia, Chao Zhang
{"title":"Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: performance and mechanisms.","authors":"Ting Wei, Hong Li, Yuyao Wang, Ming Chi, Junkang Guo, Honglei Jia, Chao Zhang","doi":"10.1016/j.jbiotec.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15% and 36.39%, which paralleled with less Cd<sup>2+</sup> influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.12.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15% and 36.39%, which paralleled with less Cd2+ influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茉莉酸甲酯减轻水稻镉毒性和减少其积累:性能和机制。
重金属污染是威胁农业生产和人类健康的世界性问题。茉莉酸甲酯(MeJA)是一种能增强植物抗逆性的植物激素。然而,MeJA在水稻镉吸收、分布和转运中的作用机制尚不清楚。在本研究中,我们发现MeJA可以改善Cd诱导的生长抑制。施用MeJA后,根和地上部Cd含量分别下降了10.15%和36.39%,这与水稻根中Cd2+流入减少和阳离子转运体OsNramp1和OsNramp5表达抑制有关。亚细胞分布表明,MeJA增加了Cd在细胞壁的分布,增加了细胞壁厚度,改变了细胞壁多糖(果胶、纤维素、半纤维素)含量,同时果胶、纤维素、半纤维素中Cd含量增加,FTIR分析提示细胞壁上的官能团(特别是- oh和COO-)参与了Cd的固定。外源MeJA抑制了Cd的根向地上部转运,这一点通过降低OsHMA2在根中的表达和降低木质部汁液中Cd的含量得到了验证。综上所述,MeJA可以作为一种叶面抗性控制物质来减少水稻Cd的积累。MeJA在植物Cd脱毒中的具体分子机制有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
期刊最新文献
Hemp tea waste-immobilized lipase for the synthesis of alkyl oleates in solvent free systems. Development of a highly efficient microbial fermentation process of recombinant Escherichia coli for GABA production from glucose. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a Transfer-Rate Online Monitoring system. Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks. Interferon Inhibitors Increase rAAV Production in HEK293 Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1