TGF-β regulates the release of breast cancer cell-derived extracellular vesicles and the sorting of their protein cargo by downregulating RAB27B expression

IF 15.5 1区 医学 Q1 CELL BIOLOGY Journal of Extracellular Vesicles Pub Date : 2024-12-26 DOI:10.1002/jev2.70026
Chao Li, Agustin Enciso-Martinez, Roman I. Koning, Mona Shahsavari, Peter ten Dijke
{"title":"TGF-β regulates the release of breast cancer cell-derived extracellular vesicles and the sorting of their protein cargo by downregulating RAB27B expression","authors":"Chao Li,&nbsp;Agustin Enciso-Martinez,&nbsp;Roman I. Koning,&nbsp;Mona Shahsavari,&nbsp;Peter ten Dijke","doi":"10.1002/jev2.70026","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood. Here, we systematically investigate the effects of TGF-β on the release and protein composition of EVs from breast cancer cells. TGF-β suppresses the transcription of <i>RAB27B</i> mediated by SMAD3 and thereby hampers EV release. Using click chemistry and quantitative proteomics, we found that TGF-β increases the quantity of protein cargo and changes the composition of EVs by downregulating RAB27B expression. The recomposed EVs, induced by TGF-β or RAB27B depletion, inhibit CD8<sup>+</sup> T cell-mediated breast cancer killing. Our findings reveal the critical roles of TGF-β and RAB27B in cancer development by regulating EV release and composition and thus provide potential targets to improve cancer immunotherapy.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 12","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood. Here, we systematically investigate the effects of TGF-β on the release and protein composition of EVs from breast cancer cells. TGF-β suppresses the transcription of RAB27B mediated by SMAD3 and thereby hampers EV release. Using click chemistry and quantitative proteomics, we found that TGF-β increases the quantity of protein cargo and changes the composition of EVs by downregulating RAB27B expression. The recomposed EVs, induced by TGF-β or RAB27B depletion, inhibit CD8+ T cell-mediated breast cancer killing. Our findings reveal the critical roles of TGF-β and RAB27B in cancer development by regulating EV release and composition and thus provide potential targets to improve cancer immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TGF-β通过下调RAB27B表达调控乳腺癌细胞源性细胞外囊泡的释放及其蛋白货物的分选。
细胞外囊泡(EVs)是肿瘤微环境中细胞间通讯的重要介质。细胞因子转化生长因子-β (TGF-β)通过癌细胞分泌的EVs促进肿瘤进展,EVs作用于肿瘤微环境中的受体细胞。然而,TGF-β影响癌细胞EV释放和组成的机制尚不完全清楚。在这里,我们系统地研究了TGF-β对乳腺癌细胞中ev释放和蛋白质组成的影响。TGF-β抑制SMAD3介导的RAB27B转录,从而阻碍EV释放。通过点击化学和定量蛋白质组学分析,我们发现TGF-β通过下调RAB27B的表达,增加了EVs的蛋白质载货量,改变了EVs的组成。TGF-β或RAB27B缺失诱导重组ev可抑制CD8+ T细胞介导的乳腺癌杀伤。我们的研究结果揭示了TGF-β和RAB27B通过调节EV的释放和组成在癌症发展中的关键作用,从而为改善癌症免疫治疗提供了潜在的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
期刊最新文献
Metabolic Profiling of Brain Tissue and Brain-Derived Extracellular Vesicles in Alzheimer's Disease Stoichiometric constraints for detection of EV-borne biomarkers in blood Small Extracellular Vesicles Engineered Using Click Chemistry to Express Chimeric Antigen Receptors Show Enhanced Efficacy in Acute Liver Failure Breast Cancer-Derived Extracellular Vesicles Modulate the Cytoplasmic and Cytoskeletal Dynamics of Blood-Brain Barrier Endothelial Cells Extracellular Vesicles From Bone Marrow-Derived Macrophages Enriched in ARG1 Enhance Microglial Phagocytosis and Haematoma Clearance Following Intracerebral Haemorrhage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1