A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-12-26 DOI:10.1093/jxb/erae515
Sabrine Nasfi, Saba Shahbazi, Katharina Bitterlich, Ena Šečić, Karl-Heinz Kogel, Jens Steinbrenner
{"title":"A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis.","authors":"Sabrine Nasfi, Saba Shahbazi, Katharina Bitterlich, Ena Šečić, Karl-Heinz Kogel, Jens Steinbrenner","doi":"10.1093/jxb/erae515","DOIUrl":null,"url":null,"abstract":"<p><p>Bidirectional communication between pathogenic microbes and their plant hosts via small (s)RNA-mediated cross-kingdom RNA interference (ckRNAi) is a key element for successful host colonisation. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes. Using stem-loop RT-qPCR, we detected the expression of a specific set of Serendipita indica (Si)sRNAs, targeting host genes involved in cell wall organization, hormonal signalling regulation, immunity, and gene regulation. To confirm the gene silencing activity of these sRNAs in plant cells, SisRNAs were transiently expressed in protoplasts. Stem-loop PCR confirmed sRNAs expression and accumulation, while qPCR validated post-transcriptional gene silencing of their predicted target genes. Furthermore, Arabidopsis ARGONAUTE 1 immunoprecipitation (AtAGO1-IP) revealed the loading of fungal SisRNAs into the plant RNAi machinery, suggesting the translocation of SisRNA from the fungus into root cells. In conclusion, this study provides a blueprint for rapid selection and analysis of sRNA effectors and further supports the model of cross-kingdom communication in the Sebacinoid symbiosis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae515","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bidirectional communication between pathogenic microbes and their plant hosts via small (s)RNA-mediated cross-kingdom RNA interference (ckRNAi) is a key element for successful host colonisation. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes. Using stem-loop RT-qPCR, we detected the expression of a specific set of Serendipita indica (Si)sRNAs, targeting host genes involved in cell wall organization, hormonal signalling regulation, immunity, and gene regulation. To confirm the gene silencing activity of these sRNAs in plant cells, SisRNAs were transiently expressed in protoplasts. Stem-loop PCR confirmed sRNAs expression and accumulation, while qPCR validated post-transcriptional gene silencing of their predicted target genes. Furthermore, Arabidopsis ARGONAUTE 1 immunoprecipitation (AtAGO1-IP) revealed the loading of fungal SisRNAs into the plant RNAi machinery, suggesting the translocation of SisRNA from the fungus into root cells. In conclusion, this study provides a blueprint for rapid selection and analysis of sRNA effectors and further supports the model of cross-kingdom communication in the Sebacinoid symbiosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个验证Serendipita indica效应物样sRNA的管道表明,在与拟南芥的共生关系中存在跨界通信。
病原微生物与植物宿主之间通过小RNA介导的跨界RNA干扰(ckRNAi)进行双向交流是成功定植宿主的关键因素。以其极其广泛的寄主范围而闻名的Serendipitaceae家族的互惠真菌是否使用srna来定殖植物根系仍存在争议。为了解决这个问题,我们开发了一个管道来验证真菌sRNAs在拟南芥基因转录后沉默中的积累、易位和活性。利用茎环RT-qPCR技术,我们检测了一组特异性的Serendipita indica (Si)sRNAs的表达,这些sRNAs靶向参与细胞壁组织、激素信号调节、免疫和基因调控的宿主基因。为了证实这些rna在植物细胞中的基因沉默活性,我们在原生质体中短暂表达了这些rna。茎环PCR证实了sRNAs的表达和积累,而qPCR证实了它们预测的靶基因的转录后基因沉默。此外,拟南芥ARGONAUTE 1免疫沉淀(AtAGO1-IP)揭示了真菌SisRNA装载到植物RNAi机制中,表明SisRNA从真菌易位到根细胞。总之,本研究为快速选择和分析sRNA效应物提供了蓝图,并进一步支持了类脂素共生中的跨界通讯模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Conserved and novel roles of the bHLH transcription factor SPATULA in tomato. Long-day induced flowering requires DNA hypermethylation in orchardgrass. DNA methylation dynamics in the shoot apical meristem. Nitric oxide as integral element in priming- induced tolerance and plant stress memory. Tissue-specific responses of the central carbon metabolism in tomato fruit to low oxygen stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1