Yaman Alsabbagh, Young Erben, Jonathan Vandenberg, Houssam Farres
{"title":"New Trends of Personalized Medicine in the Management of Abdominal Aortic Aneurysm: A Review.","authors":"Yaman Alsabbagh, Young Erben, Jonathan Vandenberg, Houssam Farres","doi":"10.3390/jpm14121148","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominal aortic aneurysm (AAA) is a significant vascular condition characterized by the dilation of the abdominal aorta, presenting a substantial risk of rupture and associated high mortality rates. Current management strategies primarily rely on aneurysm diameter and growth rates to predict rupture risk and determine the timing of surgical intervention. However, this approach has limitations, as ruptures can occur in smaller AAAs below surgical thresholds, and many large AAAs remain stable without intervention. This review highlights the need for more precise and individualized assessment tools that integrate biomechanical parameters such as wall stress, wall strength, and hemodynamic factors. Advancements in imaging modalities like ultrasound elastography, computed tomography (CT) angiography, and magnetic resonance imaging (MRI), combined with artificial intelligence, offer enhanced capabilities to assess biomechanical indices and predict rupture risk more accurately. Incorporating these technologies can lead to personalized medicine approaches, improving decision-making regarding the timing of interventions. Additionally, emerging treatments focusing on targeted delivery of therapeutics to weakened areas of the aortic wall, such as nanoparticle-based drug delivery, stem cell therapy, and gene editing techniques like CRISPR-Cas9, show promise in strengthening the aortic wall and halting aneurysm progression. By validating advanced screening modalities and developing targeted treatments, the future management of AAA aims to reduce unnecessary surgeries, prevent ruptures, and significantly improve patient outcomes.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"14 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14121148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abdominal aortic aneurysm (AAA) is a significant vascular condition characterized by the dilation of the abdominal aorta, presenting a substantial risk of rupture and associated high mortality rates. Current management strategies primarily rely on aneurysm diameter and growth rates to predict rupture risk and determine the timing of surgical intervention. However, this approach has limitations, as ruptures can occur in smaller AAAs below surgical thresholds, and many large AAAs remain stable without intervention. This review highlights the need for more precise and individualized assessment tools that integrate biomechanical parameters such as wall stress, wall strength, and hemodynamic factors. Advancements in imaging modalities like ultrasound elastography, computed tomography (CT) angiography, and magnetic resonance imaging (MRI), combined with artificial intelligence, offer enhanced capabilities to assess biomechanical indices and predict rupture risk more accurately. Incorporating these technologies can lead to personalized medicine approaches, improving decision-making regarding the timing of interventions. Additionally, emerging treatments focusing on targeted delivery of therapeutics to weakened areas of the aortic wall, such as nanoparticle-based drug delivery, stem cell therapy, and gene editing techniques like CRISPR-Cas9, show promise in strengthening the aortic wall and halting aneurysm progression. By validating advanced screening modalities and developing targeted treatments, the future management of AAA aims to reduce unnecessary surgeries, prevent ruptures, and significantly improve patient outcomes.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.