{"title":"Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of <i>Stichopus monotuberculatus</i>.","authors":"Lianghua Huang, Hui Wang, Chuanyan Pan, Xueming Yang, Guoqing Deng, Yaowen Meng, Yongxiang Yu, Xiuli Chen, Shengping Zhong","doi":"10.3390/md22120576","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on <i>Stichopus monotuberculatus</i> and conducted stress experiments at salinity levels of 20‱ and 40‱. Intestinal histological changes and the structural characteristics of the intestinal flora of <i>S. monotuberculatus</i> under salinity stress were analyzed. The results show that acute salinity stress inflicts varying degrees of damage to the intestinal tissues of <i>S. monotuberculatus</i>. Salinity stress enhances the species diversity of intestinal flora in <i>S. monotuberculatus</i>. Eight phyla of bacteria are detected in the intestine of <i>S. monotuberculatus</i>. Dominant phyla include Proteobacteria, Firmicutes, and Actinobacteria. Furthermore, functional prediction reveals that acute salinity stress can significantly modify the abundance of pathways associated with nutrient and energy metabolism mediated by the intestinal flora of <i>S. monotuberculatus</i>. These results indicate that acute salinity stress induces pathological damage to the intestinal tissues of <i>S. monotuberculatus</i>, compromising the microbial habitat and leading to alterations in the intestinal flora composition. Additionally, <i>S. monotuberculatus</i> can mitigate salinity stress by adjusting the composition of its intestinal flora and the corresponding functional pathways.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22120576","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on Stichopus monotuberculatus and conducted stress experiments at salinity levels of 20‱ and 40‱. Intestinal histological changes and the structural characteristics of the intestinal flora of S. monotuberculatus under salinity stress were analyzed. The results show that acute salinity stress inflicts varying degrees of damage to the intestinal tissues of S. monotuberculatus. Salinity stress enhances the species diversity of intestinal flora in S. monotuberculatus. Eight phyla of bacteria are detected in the intestine of S. monotuberculatus. Dominant phyla include Proteobacteria, Firmicutes, and Actinobacteria. Furthermore, functional prediction reveals that acute salinity stress can significantly modify the abundance of pathways associated with nutrient and energy metabolism mediated by the intestinal flora of S. monotuberculatus. These results indicate that acute salinity stress induces pathological damage to the intestinal tissues of S. monotuberculatus, compromising the microbial habitat and leading to alterations in the intestinal flora composition. Additionally, S. monotuberculatus can mitigate salinity stress by adjusting the composition of its intestinal flora and the corresponding functional pathways.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.