Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2025-01-20 DOI:10.3390/md23010049
Zi-Han Xu, Ming-Min Xie, Chun-Lan Xie, Xian-Wen Yang, Jun-Song Wang
{"title":"Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects.","authors":"Zi-Han Xu, Ming-Min Xie, Chun-Lan Xie, Xian-Wen Yang, Jun-Song Wang","doi":"10.3390/md23010049","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development. In this study, we isolated 44 natural products from deep-sea-derived fungi and identified isobisvertinol (<b>17</b>) as a compound with anti-inflammatory and ferroptosis-inhibiting effects. Using LPS-induced microglial inflammation and RSL3-induced neuronal ferroptosis models, we found that <b>17</b> targets TLR4 to provide neuroprotection. Molecular docking studies revealed that <b>17</b> inhibits TLR4 activation by occupying the hydrophobic pocket at the TLR4-MD2 binding site. Additionally, <b>17</b> suppresses TLR4, reducing p38 MAPK phosphorylation, and inhibits ferroptosis by decreasing lipid peroxidation and modulating mitochondrial membrane potential. Metabolomic analysis showed that <b>17</b> rescues alterations in multiple metabolic pathways induced by RSL3 and increases levels of antioxidant metabolites, including glutamine, glutamate, and glutathione. In summary, our results indicate that isobisvertinol (<b>17</b>) targets TLR4 in neural cells to reduce inflammation and inhibit p38 MAPK phosphorylation, while regulating metabolic pathways, mainly GSH synthesis, to provide antioxidant effects and prevent ferroptosis in neurons.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23010049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroinflammation and neuronal cell death are leading causes of death in the elderly and underlie various neurodegenerative diseases. These diseases involve complex pathophysiological mechanisms, including inflammatory responses, oxidative stress, and ferroptosis. Compounds derived from deep-sea fungi exhibit low toxicity and potent neuroprotective effects, offering a promising source for drug development. In this study, we isolated 44 natural products from deep-sea-derived fungi and identified isobisvertinol (17) as a compound with anti-inflammatory and ferroptosis-inhibiting effects. Using LPS-induced microglial inflammation and RSL3-induced neuronal ferroptosis models, we found that 17 targets TLR4 to provide neuroprotection. Molecular docking studies revealed that 17 inhibits TLR4 activation by occupying the hydrophobic pocket at the TLR4-MD2 binding site. Additionally, 17 suppresses TLR4, reducing p38 MAPK phosphorylation, and inhibits ferroptosis by decreasing lipid peroxidation and modulating mitochondrial membrane potential. Metabolomic analysis showed that 17 rescues alterations in multiple metabolic pathways induced by RSL3 and increases levels of antioxidant metabolites, including glutamine, glutamate, and glutathione. In summary, our results indicate that isobisvertinol (17) targets TLR4 in neural cells to reduce inflammation and inhibit p38 MAPK phosphorylation, while regulating metabolic pathways, mainly GSH synthesis, to provide antioxidant effects and prevent ferroptosis in neurons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
RSL3
阿拉丁
Erastin
阿拉丁
Ferrostatin-1
阿拉丁
Dexamethasone
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Deep-Sea-Derived Isobisvertinol Targets TLR4 to Exhibit Neuroprotective Activity via Anti-Inflammatory and Ferroptosis-Inhibitory Effects. Ishophloroglucin A Isolated from Ishige okamurae Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy. Metabolic Blockade-Based Genome Mining of Malbranchea circinata SDU050: Discovery of Diverse Secondary Metabolites. Methyl 3-Bromo-4,5-dihydroxybenzoate Attenuates Inflammatory Bowel Disease by Regulating TLR/NF-κB Pathways. Antimicrobial Activities of Polysaccharide-Rich Extracts from the Irish Seaweed Alaria esculenta, Generated Using Green and Conventional Extraction Technologies, Against Foodborne Pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1