{"title":"Spatial distribution of bacteria in response to phytoplankton community and multiple environmental factors in surface waters in Sanggou Bay.","authors":"Song Peng, Rong Bi, Jiwen Liu, Jiaxuan Cui, Xinkai Fu, Xiaotong Xiao, Ruihuan Li, Zengjie Jiang, Shulan Xu, Chuanli Zhang, Xiao-Hua Zhang, Meixun Zhao","doi":"10.1016/j.marenvres.2024.106912","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities. Here, we investigated bacterial community structure, and the influence of environmental factors and phytoplankton biomass and community structure based on samples collected in August 2022 from Sanggou Bay, a typical aquaculture bay in northern China. Environmental conditions, phytoplankton and bacterial community structure differed significantly between different aquaculture areas, showing higher relative abundance of Synechococcus sp. in the mixing area of shellfish and kelp culture (Area II) than the shellfish culture area (Area I). In contrast, Marivita cryptomonadis was more abundant in Area I, associated with elevated dissolved inorganic nitrogen (DIN), POC, POC/PN (the molar ratio of POC to particulate nitrogen) and sterol-derived total phytoplankton biomass. The strong correlation between total phytoplankton biomass and particle-associated bacteria indicated the important role of this bacterial fraction in processing organic compounds produced by phytoplankton. Significant correlations between bacterial community composition and POC/PN suggested more organic carbon potentially entering detrital biomass pools in Area I compared to Area II. Our results suggest that spatial distribution patterns of bacterial community structure were regulated by multiple abiotic and biotic factors and had a profound impact on the fate of organic carbon under highly intensive aquaculture activities in Sanggou Bay.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106912"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106912","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal bays link terrestrial and oceanic carbon reservoirs and play important roles in marine carbon cycles. Particulate organic carbon (POC) produced by phytoplankton is a major autochthonous carbon source in coastal bays. Previous studies on the fate of POC produced by phytoplankton mainly focused on the relationship between phytoplankton and zooplankton in classic food webs, while our knowledge on the roles of bacterioplankton is still limited, particularly in bays under highly intensive aquaculture activities. Here, we investigated bacterial community structure, and the influence of environmental factors and phytoplankton biomass and community structure based on samples collected in August 2022 from Sanggou Bay, a typical aquaculture bay in northern China. Environmental conditions, phytoplankton and bacterial community structure differed significantly between different aquaculture areas, showing higher relative abundance of Synechococcus sp. in the mixing area of shellfish and kelp culture (Area II) than the shellfish culture area (Area I). In contrast, Marivita cryptomonadis was more abundant in Area I, associated with elevated dissolved inorganic nitrogen (DIN), POC, POC/PN (the molar ratio of POC to particulate nitrogen) and sterol-derived total phytoplankton biomass. The strong correlation between total phytoplankton biomass and particle-associated bacteria indicated the important role of this bacterial fraction in processing organic compounds produced by phytoplankton. Significant correlations between bacterial community composition and POC/PN suggested more organic carbon potentially entering detrital biomass pools in Area I compared to Area II. Our results suggest that spatial distribution patterns of bacterial community structure were regulated by multiple abiotic and biotic factors and had a profound impact on the fate of organic carbon under highly intensive aquaculture activities in Sanggou Bay.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.