Stabilization of nanoscale magnetic bubbles in zero magnetic field by rotatable magnetic force microscopy

IF 2.5 3区 工程技术 Q1 MICROSCOPY Micron Pub Date : 2024-12-22 DOI:10.1016/j.micron.2024.103777
Min Zhang , Zihao Li , Muhammad Touqeer , Shuai Dong , Kesen Zhao , Aile Wang , Ze Wang , Jing Zhang , Jihao Wang , Wenjie Meng , Qiyuan Feng , Yalin Lu , Yubin Hou , Qingyou Lu
{"title":"Stabilization of nanoscale magnetic bubbles in zero magnetic field by rotatable magnetic force microscopy","authors":"Min Zhang ,&nbsp;Zihao Li ,&nbsp;Muhammad Touqeer ,&nbsp;Shuai Dong ,&nbsp;Kesen Zhao ,&nbsp;Aile Wang ,&nbsp;Ze Wang ,&nbsp;Jing Zhang ,&nbsp;Jihao Wang ,&nbsp;Wenjie Meng ,&nbsp;Qiyuan Feng ,&nbsp;Yalin Lu ,&nbsp;Yubin Hou ,&nbsp;Qingyou Lu","doi":"10.1016/j.micron.2024.103777","DOIUrl":null,"url":null,"abstract":"<div><div>The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero. By rotating the sample within an external magnetic field of 0.42 T, the magnetic stripes transform into nanoscale magnetic bubble domains. This transition is driven by the minimization of the magnetostatic energy, accompanied by an increase in both the exchange energy and the Zeeman energy. The classical ferromagnetic Heisenberg model effectively describes the magnetic stripe-to-bubble transition under an applied magnetic field. The dense bubble domains remain stable in zero magnetic field due to long-range magnetostatic interaction. We introduce a straightforward method for constructing bubble domains in a zero magnetic field. This work presents a promising material platform for the future development of bubble-based spintronic devices.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"190 ","pages":"Article 103777"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096843282400194X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero. By rotating the sample within an external magnetic field of 0.42 T, the magnetic stripes transform into nanoscale magnetic bubble domains. This transition is driven by the minimization of the magnetostatic energy, accompanied by an increase in both the exchange energy and the Zeeman energy. The classical ferromagnetic Heisenberg model effectively describes the magnetic stripe-to-bubble transition under an applied magnetic field. The dense bubble domains remain stable in zero magnetic field due to long-range magnetostatic interaction. We introduce a straightforward method for constructing bubble domains in a zero magnetic field. This work presents a promising material platform for the future development of bubble-based spintronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转磁力显微镜研究纳米级磁泡在零磁场下的稳定性。
气泡磁织构在零磁场中的稳定性由于其在自旋电子器件中的潜在应用而引起了人们的广泛关注。在此,我们使用自制的旋转磁力显微镜(MFM)来观察NiO/Ni/Ti薄膜的磁畴演变。在100 K的面外磁场作用下,磁条畴衰减为孤立的磁泡,当外加磁场降至零时,磁条畴重新出现。通过在0.42 T的外部磁场中旋转样品,磁条转变为纳米级磁泡域。这种转变是由静磁能最小化驱动的,同时伴随着交换能和塞曼能的增加。经典铁磁海森堡模型有效地描述了外加磁场作用下磁条到磁泡的转变。由于长程静磁相互作用,致密气泡域在零磁场下保持稳定。我们介绍了一种在零磁场中构造气泡域的简单方法。这项工作为未来基于气泡的自旋电子器件的发展提供了一个有前途的材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
期刊最新文献
Molecular dynamics study on the mitigation of radiation damage caused by electron pulses Structure of the trophic chamber and follicular epithelium in ovaries of the model heteropteran species Pyrrhocoris apterus Effect of Y and Zr addition on the intergranular corrosion of Al-Mg alloy after sensitization treatment Toward cancer detection by label-free microscopic imaging in oncological surgery: Techniques, instrumentation and applications Single long linear flat-top, double and triple optical beams formation by an azimuthally polarized laser light using a seven-zone BPPF system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1