Characterisation of High Alkaline-Tolerant Novel Ulvan Lyase from Pseudoalteromonas agarivorans: Potential Applications of Enzyme Derived Oligo-Ulvan as Anti-Diabetic Agent.
Navindu Dinara Gajanayaka, Eunyoung Jo, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Chinmayee Bawkar, Yeon-Ju Lee, Gun-Hoo Park, Chulhong Oh, Youngdeuk Lee
{"title":"Characterisation of High Alkaline-Tolerant Novel Ulvan Lyase from <i>Pseudoalteromonas agarivorans</i>: Potential Applications of Enzyme Derived Oligo-Ulvan as Anti-Diabetic Agent.","authors":"Navindu Dinara Gajanayaka, Eunyoung Jo, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Chinmayee Bawkar, Yeon-Ju Lee, Gun-Hoo Park, Chulhong Oh, Youngdeuk Lee","doi":"10.3390/md22120577","DOIUrl":null,"url":null,"abstract":"<p><p>Green algae, particularly <i>Ulva</i> species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods. Nevertheless, the biochemical characterisation of ulvan lyases, specifically those belonging to the polysaccharide lyase family 25 (PL25), is limited. In this study, we identified and biochemically characterised a novel PL25 ulvan lyase, PaUL25, which functions optimally at pH 10. Additionally, we explored the alpha (α)-glucosidase inhibitory properties of ulvan depolymerised products. PaUL25 exhibited optimum activity at 35 °C in Tris-HCl buffer (pH 10). Moreover, enzyme activity was enhanced by more than 150% in the presence of Mn<sup>2+</sup> metal ions at and below concentrations of 10 mM. The endolytic action of PaUL25 produced ulvan oligosaccharides with degrees of polymerisation of 2 and 4 as its end products. Partially and completely hydrolysed ulvan oligosaccharides exhibited α-glucosidase inhibitory activity, with half inhibitory concentration IC<sub>50</sub> values of 3.21 ± 0.13 and 2.51 ± 0.19 mg/mL, respectively. These findings expand our understanding of PL25 and highlight the pharmaceutical potential of ulvan oligosaccharides, particularly as antidiabetic agents.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676845/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22120577","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Green algae, particularly Ulva species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods. Nevertheless, the biochemical characterisation of ulvan lyases, specifically those belonging to the polysaccharide lyase family 25 (PL25), is limited. In this study, we identified and biochemically characterised a novel PL25 ulvan lyase, PaUL25, which functions optimally at pH 10. Additionally, we explored the alpha (α)-glucosidase inhibitory properties of ulvan depolymerised products. PaUL25 exhibited optimum activity at 35 °C in Tris-HCl buffer (pH 10). Moreover, enzyme activity was enhanced by more than 150% in the presence of Mn2+ metal ions at and below concentrations of 10 mM. The endolytic action of PaUL25 produced ulvan oligosaccharides with degrees of polymerisation of 2 and 4 as its end products. Partially and completely hydrolysed ulvan oligosaccharides exhibited α-glucosidase inhibitory activity, with half inhibitory concentration IC50 values of 3.21 ± 0.13 and 2.51 ± 0.19 mg/mL, respectively. These findings expand our understanding of PL25 and highlight the pharmaceutical potential of ulvan oligosaccharides, particularly as antidiabetic agents.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.