Sumon Dey, Ankit Kumar Nayak, Hema Rajaram, Surajit Das
{"title":"Exploitative stress within Bacillus subtilis biofilm determines the spatial distribution of pleomorphic cells.","authors":"Sumon Dey, Ankit Kumar Nayak, Hema Rajaram, Surajit Das","doi":"10.1016/j.micres.2024.128034","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H<sup>+</sup> ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128034"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2024.128034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations. We hypothesized that pleomorphism also exists within the biofilm, which can be considered as the fundamental niche for bacteria. We report a distinct pattern of cell size variation throughout the biofilm of Bacillus subtilis. Cell size heterogeneity was observed in biofilm development, wherein the frequency of long cells is higher in outer regions, whereas lower in inner regions. Moreover, compared to planktonic cells, bacteria in the biofilm mode reduce their geometric ratio from 8.34 to 3.69 and 2.65 in the outer and inner regions, respectively. There were no significant differences observed in nutrient diffusion from the outer to the inner region, and more than 73 % of cells in the inner region were viable. However, the inner and middle regions were more acidic than the outer of the biofilm. Conclusively, growth rate-independent cell size reduction at low pH suggests that the resulting phenotype switching within biofilm was observed due to the pH gradient of neutral to acidic from the outer to the core of the biofilm. This gradient of H+ ions concentration may create exploitative stress within the biofilm, which could favor specific pleomorphic cells to thrive in their specialized niches. By understanding the cell size variation in response to the local environment, we propose a model of biofilm formation by pleomorphic cells.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.