Controllable Synthesis of Three-Dimensional Chiral Au Nanoflowers Induced by Cysteine with Excellent Biocompatible Properties.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-19 DOI:10.3390/nano14242040
Shengmiao Liu, Jianhao Zhang, Wenjing Yan
{"title":"Controllable Synthesis of Three-Dimensional Chiral Au Nanoflowers Induced by Cysteine with Excellent Biocompatible Properties.","authors":"Shengmiao Liu, Jianhao Zhang, Wenjing Yan","doi":"10.3390/nano14242040","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers. By employing a two-step seed-mediated growth approach, stable chiral Au nanoparticles with customizable sizes, shapes, and optical properties were produced by adjusting the Au nanosphere (Au NP) seed concentration and cysteine dosage. These nanoparticles exhibited optical activity in both the visible and near-infrared regions, with a maximum anisotropy factor (<i>g</i>-factor) of 0.024. Furthermore, the PEG-modified chiral Au NFs demonstrated excellent biocompatibility. This approach provides a precise method for geometrically controlling the design of three-dimensional chiral nanomaterials, holding great potential for biomedical applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14242040","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers. By employing a two-step seed-mediated growth approach, stable chiral Au nanoparticles with customizable sizes, shapes, and optical properties were produced by adjusting the Au nanosphere (Au NP) seed concentration and cysteine dosage. These nanoparticles exhibited optical activity in both the visible and near-infrared regions, with a maximum anisotropy factor (g-factor) of 0.024. Furthermore, the PEG-modified chiral Au NFs demonstrated excellent biocompatibility. This approach provides a precise method for geometrically controlling the design of three-dimensional chiral nanomaterials, holding great potential for biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半胱氨酸诱导具有优异生物相容性的三维手性金纳米花的可控合成。
手性分子在自然界和生物系统中无处不在,其中手性纳米颗粒独特的光学和物理性质与其形状密切相关。合成具有精确结构和可调尺寸的手性等离子体纳米材料是探索其应用的必要条件。本研究提出了一种利用d -半胱氨酸和l -半胱氨酸作为手性诱导剂,从三八面体纳米晶体(TOH)衍生出三维手性金纳米花(Au NFs)的方法。采用两步种子介导生长方法,通过调节Au纳米球(Au NP)种子浓度和半胱氨酸剂量,制备出具有可定制尺寸、形状和光学性质的稳定手性Au纳米颗粒。这些纳米粒子在可见光和近红外区域均表现出光学活性,其各向异性因子(g因子)最大为0.024。此外,peg修饰的手性Au NFs具有良好的生物相容性。该方法为三维手性纳米材料的设计提供了一种精确的几何控制方法,具有很大的生物医学应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
Ascorbic acid (AA)
索莱宝
Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na)
阿拉丁
Sodium borohydride (NaBH4)
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Anisotropic Elasticity, Spin-Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence. A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1