Peng Bai, Hanbin Wang, Rongrong Lv, Yi Wang, Yinqiao Li, Shangjie Han, Jiaxuan Cai, Ning Yang, Weidong Chu, Yan Xie, Meng Chen, Yingxin Wang, Ziran Zhao
{"title":"Surface Microstructure Enhanced Cryogenic Infrared Light Emitting Diodes for Semiconductor Broadband Upconversion.","authors":"Peng Bai, Hanbin Wang, Rongrong Lv, Yi Wang, Yinqiao Li, Shangjie Han, Jiaxuan Cai, Ning Yang, Weidong Chu, Yan Xie, Meng Chen, Yingxin Wang, Ziran Zhao","doi":"10.3390/nano14242039","DOIUrl":null,"url":null,"abstract":"<p><p>Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs. Systematical investigations on the cryogenic-temperature performances of microstructure-coupled LEDs, including electroluminescence efficiency, luminescence spectrum, and recombination rate, have been carried out by elaborating their enhancement mechanism and light emitting characteristics both experimentally and theoretically. We have revealed that the reason for the nearly 35% ELE enhancement of the optimized structure under cryogenic temperature and weak injection current is the efficient carrier injection efficiency and the high recombination rate in the active region. We also compare studies of the surface luminescence uniformity of the optimized LED with that of the unoptimized device. This work gives a precise description, and explanation of the performance of the optimized microstructure coupled LED at low temperatures, providing important guidance and inspiration for the optimization of broadband upconverter in the cryogenic temperature region.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14242039","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs. Systematical investigations on the cryogenic-temperature performances of microstructure-coupled LEDs, including electroluminescence efficiency, luminescence spectrum, and recombination rate, have been carried out by elaborating their enhancement mechanism and light emitting characteristics both experimentally and theoretically. We have revealed that the reason for the nearly 35% ELE enhancement of the optimized structure under cryogenic temperature and weak injection current is the efficient carrier injection efficiency and the high recombination rate in the active region. We also compare studies of the surface luminescence uniformity of the optimized LED with that of the unoptimized device. This work gives a precise description, and explanation of the performance of the optimized microstructure coupled LED at low temperatures, providing important guidance and inspiration for the optimization of broadband upconverter in the cryogenic temperature region.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.