Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-20 DOI:10.3390/nano14242044
Zhiling Chen, Kun Lv, Renqiang Zhao, Yaxian Lu, Ping Chen
{"title":"Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.","authors":"Zhiling Chen, Kun Lv, Renqiang Zhao, Yaxian Lu, Ping Chen","doi":"10.3390/nano14242044","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere. Moreover, perfect stability was also demonstrated in acid-base environments, with pH values ranging from 1 to 13. Based on its excellent stability and piezotronic performance, a flexible device for motion monitoring was developed, capable of detecting motions such as finger, knee, and wrist bending, as well as swallowing. Furthermore, gesture recognition and intelligent fall monitoring were explored based on the bending properties. In addition, an intelligent fall warning system was proposed for the personalized healthcare application of elders by applying machine learning to analyze data collected from typical activities. Our research provides a path for stable and flexible electronics and personalized healthcare applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14242044","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere. Moreover, perfect stability was also demonstrated in acid-base environments, with pH values ranging from 1 to 13. Based on its excellent stability and piezotronic performance, a flexible device for motion monitoring was developed, capable of detecting motions such as finger, knee, and wrist bending, as well as swallowing. Furthermore, gesture recognition and intelligent fall monitoring were explored based on the bending properties. In addition, an intelligent fall warning system was proposed for the personalized healthcare application of elders by applying machine learning to analyze data collected from typical activities. Our research provides a path for stable and flexible electronics and personalized healthcare applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于运动监测和跌落预警的柔性稳定GaN压电传感器。
可穿戴设备由于其便携性、一致性和优异的机械灵活性,在健康监测和个性化医疗保健方面具有潜在的应用。然而,它们在酸性或碱性环境中的不稳定性往往限制了它们的性能。在本研究中,通过简单可控的制造工艺,基于GaN纳米板开发了一种具有优异稳定性的柔性传感器,该传感器在空气环境中40天的线性度和稳定性保持在原始性能的近99%。此外,在pH值为1 ~ 13的酸碱环境中也表现出良好的稳定性。基于其优异的稳定性和压电性能,开发了一种柔性运动监测装置,能够检测手指、膝盖、手腕弯曲以及吞咽等运动。在此基础上,研究了基于弯曲特性的手势识别和智能跌倒监测。此外,通过机器学习对典型活动数据进行分析,提出了一种针对老年人个性化医疗应用的智能跌倒预警系统。我们的研究为稳定灵活的电子产品和个性化医疗保健应用提供了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Urea
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Anisotropic Elasticity, Spin-Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence. A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1