{"title":"Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS<sub>2</sub> Grain Boundaries: A First-Principles Study.","authors":"Zhiyuan Li, Shuqing Yang, Yiren Wang","doi":"10.3390/nano14242043","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS<sub>2</sub> with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS<sub>2</sub> system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS<sub>2</sub> is of great significance for exploring the electromagnetic properties of monolayer MoS<sub>2</sub> for the development of electronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14242043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS2 with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS2 system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS2 is of great significance for exploring the electromagnetic properties of monolayer MoS2 for the development of electronic devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.