Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS2 Grain Boundaries: A First-Principles Study.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-12-20 DOI:10.3390/nano14242043
Zhiyuan Li, Shuqing Yang, Yiren Wang
{"title":"Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS<sub>2</sub> Grain Boundaries: A First-Principles Study.","authors":"Zhiyuan Li, Shuqing Yang, Yiren Wang","doi":"10.3390/nano14242043","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS<sub>2</sub> with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS<sub>2</sub> system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS<sub>2</sub> is of great significance for exploring the electromagnetic properties of monolayer MoS<sub>2</sub> for the development of electronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14242043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS2 with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS2 system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS2 is of great significance for exploring the electromagnetic properties of monolayer MoS2 for the development of electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层二硫化钼晶界上过渡金属原子链的形成和磁性:第一性原理研究。
磁性一维纳米结构在自旋电子学中显示出巨大的潜力,可以作为磁性材料和多功能器件的基本组成部分。在本研究中,过渡族原子链(V, Cr, Mn, Fe, Co和Ni)被引入到具有4bbb80d型晶界的非磁性二硫化钼中。基于第一性原理计算,V原子链表现出良好的热力学稳定性,并能沿晶界方向自组装。V、Cr、Mn和Ni原子链的形成可以通过典型的d-d和p-d相互作用诱导磁性形成4|8ud型MoS2体系。过渡金属掺杂和晶界对单层二硫化钼磁性的共同影响,对于探索单层二硫化钼的电磁特性对电子器件的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. AgGaS2 and Derivatives: Design, Synthesis, and Optical Properties. Anisotropic Elasticity, Spin-Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence. A Cu(I)-Based MOF with Nonlinear Optical Properties and a Favorable Optical Limit Threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1