Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-12-27 DOI:10.1088/1361-6528/ada38f
Antonio Said Webbe Sales, Vinicius de Queiroz Pereira, Airton Natanael Coelho Dias
{"title":"Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.","authors":"Antonio Said Webbe Sales, Vinicius de Queiroz Pereira, Airton Natanael Coelho Dias","doi":"10.1088/1361-6528/ada38f","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO). For example, polyimides show a decrease in elongation at break by 10% after exposure to VUV radiation of 2000 equivalent solar hours (ESH). The thermal stability under vacuum ultraviolet (VUV) irradiation shows that colorless polyimides like CPI-T/Al exhibit an onset degradation temperature of 451°C, while CPI-L/Al shows a degradation onset of 439° C. Additionally, advancements in composite materials for gamma and neutron radiation shielding are covered. Materials such as fluorinated hyperbranched polyimides (FHBPI) display a decomposition temperature of approximately 450°C, which ensures structural integrity during space missions involving radiation. Radiation absorption and scattering properties of these composites are assessed, with materials such as W-Bi2O3 demonstrating a high linear attenuation coefficient (LAC) of 2.5 MeV, enhancing their efficiency in protecting against gamma radiation. Mechanical and optical changes, such as a 15% increase in solar absorbance after exposure to VUV, are critical for prolonged space missions. Moreover, the integration of nanoparticles like graphene and carbon nanotubes into polymers has proven to be an efficient strategy for improving the shielding properties and stability of materials. Nanocomposites like BNTT-Ti display a neutron transmission reduction of 20%, further validating their potential for space applications. Future investigations will focus on optimizing the functionality, manufacturing, and compatibility of composite materials, as well as validating their performance under actual space mission conditions. Collaboration among material scientists, aerospace engineers, and space agencies is vital to transforming laboratory discoveries into viable solutions for radiation protection in space.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada38f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO). For example, polyimides show a decrease in elongation at break by 10% after exposure to VUV radiation of 2000 equivalent solar hours (ESH). The thermal stability under vacuum ultraviolet (VUV) irradiation shows that colorless polyimides like CPI-T/Al exhibit an onset degradation temperature of 451°C, while CPI-L/Al shows a degradation onset of 439° C. Additionally, advancements in composite materials for gamma and neutron radiation shielding are covered. Materials such as fluorinated hyperbranched polyimides (FHBPI) display a decomposition temperature of approximately 450°C, which ensures structural integrity during space missions involving radiation. Radiation absorption and scattering properties of these composites are assessed, with materials such as W-Bi2O3 demonstrating a high linear attenuation coefficient (LAC) of 2.5 MeV, enhancing their efficiency in protecting against gamma radiation. Mechanical and optical changes, such as a 15% increase in solar absorbance after exposure to VUV, are critical for prolonged space missions. Moreover, the integration of nanoparticles like graphene and carbon nanotubes into polymers has proven to be an efficient strategy for improving the shielding properties and stability of materials. Nanocomposites like BNTT-Ti display a neutron transmission reduction of 20%, further validating their potential for space applications. Future investigations will focus on optimizing the functionality, manufacturing, and compatibility of composite materials, as well as validating their performance under actual space mission conditions. Collaboration among material scientists, aerospace engineers, and space agencies is vital to transforming laboratory discoveries into viable solutions for radiation protection in space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航天工业辐射防护用纳米材料的研究进展:系统综述。
纳米材料以其独特的性能和创新潜力脱颖而出,特别是在防止空间辐射的应用中。它们为这一挑战提供了一种创新的方法,展示了显著的辐射吸收和散射特性,以及用于开发防护服和设备的灵活性和轻便性。本文详细介绍了聚酰亚胺(PIs)等高分子材料在紫外线(UV)辐射和原子氧(AO)衰减方面的应用。例如,聚酰亚胺暴露于2000等效太阳小时(ESH)的紫外辐射后,断裂伸长率下降10%。真空紫外(VUV)照射下的热稳定性表明,CPI-T/Al等无色聚酰亚胺的起始降解温度为451℃,CPI-L/Al的起始降解温度为439℃。此外,本文还介绍了用于屏蔽伽马和中子辐射的复合材料的进展。氟化超支化聚酰亚胺(FHBPI)等材料的分解温度约为450°C,可确保在涉及辐射的空间任务期间结构完整。对这些复合材料的辐射吸收和散射性能进行了评估,其中W-Bi2O3等材料显示出2.5 MeV的高线性衰减系数(LAC),提高了它们对伽马辐射的防护效率。机械和光学变化,如暴露于VUV后太阳吸收率增加15%,对长时间的太空任务至关重要。此外,将纳米颗粒(如石墨烯和碳纳米管)集成到聚合物中已被证明是提高材料屏蔽性能和稳定性的有效策略。像BNTT-Ti这样的纳米复合材料显示中子透射率降低了20%,进一步验证了它们在太空应用的潜力。未来的研究将集中在优化复合材料的功能、制造和兼容性,以及验证其在实际空间任务条件下的性能。材料科学家、航空航天工程师和空间机构之间的合作对于将实验室发现转化为空间辐射防护的可行解决方案至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
C60fullerene improves the contractile activity of the injured ratmuscle gastrocnemius. Metal chalcogenide quantum dots for photochemical and electrochemical hydrogen generation: recent advancements and technological challenges. Dexamethasone-loaded fibroin nanoparticles promote retinal reattachment in rats by regulating the Th17/Treg balance. Hydrophobic PU fabric with synergistic conductive networks for boosted high sensitivity, wide linear-range wearable strain sensor. Selective area molecular beam epitaxy of InSb on InP(111)B: from thin films to quantum nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1