{"title":"Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.","authors":"Huaichuan Duan, Siyao Li, Xin Wang, Yutong Ge, Yuting Song, Dongling Hu, Wei Liu, Jianping Hu, Hubing Shi","doi":"10.1111/ppl.70011","DOIUrl":null,"url":null,"abstract":"<p><p>As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP). The molecular mechanics results indicate that the binding of S-adenosyl methionine (SAM) and CCoA is sequential, with SAM first binding and inducing inward constriction of the CCoAOMT; then CCoA binds to the pocket, and this process closes the outer channel, preventing contamination by impurities and ensuring that the reaction proceeds. Next, the key residues in the recognition process of SAM (F69 and D91) and CCoA (I40, N170, Y188 and D218) were analyzed, and we identified that K146 as a base catalyst is important for inducing the methylation reaction. Immediately after that, the possible methylation reaction mechanism was deduced by the combination of Restrained Electrostatic Potential (RESP) and Independent Gradient Model (IGM) analysis, focusing on the catalytic center electron cloud density and RESP charge distribution. Finally, the DCNGP results verified that the designed mutant groups were all able to effectively reduce the lignin content and increase the S-lignin content/ G-lignin content ratio, which was beneficial for the subsequent lignin removal. Multifaceted consideration of factors that reduce lignin content and combined deep learning to screen for favorable mutations in target traits provides new ideas for targeted breeding of low-lignin poplars.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70011"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP). The molecular mechanics results indicate that the binding of S-adenosyl methionine (SAM) and CCoA is sequential, with SAM first binding and inducing inward constriction of the CCoAOMT; then CCoA binds to the pocket, and this process closes the outer channel, preventing contamination by impurities and ensuring that the reaction proceeds. Next, the key residues in the recognition process of SAM (F69 and D91) and CCoA (I40, N170, Y188 and D218) were analyzed, and we identified that K146 as a base catalyst is important for inducing the methylation reaction. Immediately after that, the possible methylation reaction mechanism was deduced by the combination of Restrained Electrostatic Potential (RESP) and Independent Gradient Model (IGM) analysis, focusing on the catalytic center electron cloud density and RESP charge distribution. Finally, the DCNGP results verified that the designed mutant groups were all able to effectively reduce the lignin content and increase the S-lignin content/ G-lignin content ratio, which was beneficial for the subsequent lignin removal. Multifaceted consideration of factors that reduce lignin content and combined deep learning to screen for favorable mutations in target traits provides new ideas for targeted breeding of low-lignin poplars.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.