{"title":"Phenome-wide investigation of bidirectional causal relationships between major depressive disorder and common human diseases.","authors":"Wenxi Sun, Ancha Baranova, Dongming Liu, Hongbao Cao, Xiaobin Zhang, Fuquan Zhang","doi":"10.1038/s41398-024-03216-z","DOIUrl":null,"url":null,"abstract":"<p><p>The high comorbidity of major depressive disorder (MDD) with other diseases has been well-documented. However, the pairwise causal connections for MDD comorbid networks are poorly characterized. We performed Phenome-wide Mendelian randomization (MR) analyses to explore bidirectional causal associations between MDD (N = 807,553) and 877 common diseases from FinnGen datasets (N = 377,277). The inverse variance weighting method was the primary technique, and other methods (weighted median and MR-Egger) were used for sensitivity analyses. Our MR analyses showed that the genetic liability to MDD is causally associated with the risks of 324 disease phenotypes (average b: 0.339), including 46 psychiatric and behavioral disorders (average b: 0.618), 18 neurological diseases (average b: 0.348), 44 respiratory diseases (average b: 0.345), 40 digestive diseases (average b: 0.281), 18 circulatory diseases (average b: 0.237), 37 genitourinary diseases (average b: 0.271), 66 musculoskeletal and connective diseases (average b: 0.326), 22 endocrine diseases (average b: 0.302), and others. In a reverse analysis, a total of 51 genetic components predisposing to various diseases were causally associated with MDD risk (average b: 0.086), including 5 infectious diseases (average b: 0.056), 11 neurological diseases (average b: 0.106), 14 oncological diseases (average b: 0.108), and 5 psychiatric and behavioral disorders (average b: 0.114). Bidirectional causal associations were identified between MDD and 15 diseases. For most MR analyses, little evidence of heterogeneity and pleiotropy was detected. Our findings confirmed the extensive and significant causal role of genetic predisposition to MDD in contributing to human disease phenotypes, which were more pronounced than those seen in the reverse analysis of the causal influences of other diseases on MDD.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"506"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03216-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
The high comorbidity of major depressive disorder (MDD) with other diseases has been well-documented. However, the pairwise causal connections for MDD comorbid networks are poorly characterized. We performed Phenome-wide Mendelian randomization (MR) analyses to explore bidirectional causal associations between MDD (N = 807,553) and 877 common diseases from FinnGen datasets (N = 377,277). The inverse variance weighting method was the primary technique, and other methods (weighted median and MR-Egger) were used for sensitivity analyses. Our MR analyses showed that the genetic liability to MDD is causally associated with the risks of 324 disease phenotypes (average b: 0.339), including 46 psychiatric and behavioral disorders (average b: 0.618), 18 neurological diseases (average b: 0.348), 44 respiratory diseases (average b: 0.345), 40 digestive diseases (average b: 0.281), 18 circulatory diseases (average b: 0.237), 37 genitourinary diseases (average b: 0.271), 66 musculoskeletal and connective diseases (average b: 0.326), 22 endocrine diseases (average b: 0.302), and others. In a reverse analysis, a total of 51 genetic components predisposing to various diseases were causally associated with MDD risk (average b: 0.086), including 5 infectious diseases (average b: 0.056), 11 neurological diseases (average b: 0.106), 14 oncological diseases (average b: 0.108), and 5 psychiatric and behavioral disorders (average b: 0.114). Bidirectional causal associations were identified between MDD and 15 diseases. For most MR analyses, little evidence of heterogeneity and pleiotropy was detected. Our findings confirmed the extensive and significant causal role of genetic predisposition to MDD in contributing to human disease phenotypes, which were more pronounced than those seen in the reverse analysis of the causal influences of other diseases on MDD.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.