{"title":"Importance of pesticide and additional food in pest-predator system: a theoretical study.","authors":"K Durga Prasad, B S R V Prasad, Kritish De","doi":"10.1080/17513758.2024.2444263","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated pest management (IPM) combines chemical and biological control to maintain pest populations below economic thresholds. The impact of providing additional food for predators on pest-predator dynamics, along- side pesticide use, in the IPM context remains unstudied. To address this issue, in this work a theoretical model was developed using differential equations, assuming Holling type II functional response for the predator, with additional food sources included. Strategies for controlling pest populations were derived by analyzing Hopf bifurcation occurring in the system using dynamical system theory. The study revealed that the quality and quantity of additional food supplied to predators play a crucial role in the system's dynamics. Pesticides, combined with the introduction of predators supported by high-quality supplementary food, enable a quick elimination of pests from the system more effectively. This observation highlights the role of IPM in optimizing pest management strategies with minimal pesticide application and supporting the environment.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2444263"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2444263","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated pest management (IPM) combines chemical and biological control to maintain pest populations below economic thresholds. The impact of providing additional food for predators on pest-predator dynamics, along- side pesticide use, in the IPM context remains unstudied. To address this issue, in this work a theoretical model was developed using differential equations, assuming Holling type II functional response for the predator, with additional food sources included. Strategies for controlling pest populations were derived by analyzing Hopf bifurcation occurring in the system using dynamical system theory. The study revealed that the quality and quantity of additional food supplied to predators play a crucial role in the system's dynamics. Pesticides, combined with the introduction of predators supported by high-quality supplementary food, enable a quick elimination of pests from the system more effectively. This observation highlights the role of IPM in optimizing pest management strategies with minimal pesticide application and supporting the environment.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.