Transformer Dil-DenseUnet: An Advanced Architecture for Stroke Segmentation.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-11-25 DOI:10.3390/jimaging10120304
Nesrine Jazzar, Besma Mabrouk, Ali Douik
{"title":"Transformer Dil-DenseUnet: An Advanced Architecture for Stroke Segmentation.","authors":"Nesrine Jazzar, Besma Mabrouk, Ali Douik","doi":"10.3390/jimaging10120304","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel architecture, Transformer Dil-DenseUNet, designed to address the challenges of accurately segmenting stroke lesions in MRI images. Precise segmentation is essential for diagnosing and treating stroke patients, as it provides critical spatial insights into the affected brain regions and the extent of damage. Traditional manual segmentation is labor-intensive and error-prone, highlighting the need for automated solutions. Our Transformer Dil-DenseUNet combines DenseNet, dilated convolutions, and Transformer blocks, each contributing unique strengths to enhance segmentation accuracy. The DenseNet component captures fine-grained details and global features by leveraging dense connections, improving both precision and feature reuse. The dilated convolutional blocks, placed before each DenseNet module, expand the receptive field, capturing broader contextual information essential for accurate segmentation. Additionally, the Transformer blocks within our architecture address CNN limitations in capturing long-range dependencies by modeling complex spatial relationships through multi-head self-attention mechanisms. We assess our model's performance on the Ischemic Stroke Lesion Segmentation Challenge 2015 (SISS 2015) and ISLES 2022 datasets. In the testing phase, the model achieves a Dice coefficient of 0.80 ± 0.30 on SISS 2015 and 0.81 ± 0.33 on ISLES 2022, surpassing the current state-of-the-art results on these datasets.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10120304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel architecture, Transformer Dil-DenseUNet, designed to address the challenges of accurately segmenting stroke lesions in MRI images. Precise segmentation is essential for diagnosing and treating stroke patients, as it provides critical spatial insights into the affected brain regions and the extent of damage. Traditional manual segmentation is labor-intensive and error-prone, highlighting the need for automated solutions. Our Transformer Dil-DenseUNet combines DenseNet, dilated convolutions, and Transformer blocks, each contributing unique strengths to enhance segmentation accuracy. The DenseNet component captures fine-grained details and global features by leveraging dense connections, improving both precision and feature reuse. The dilated convolutional blocks, placed before each DenseNet module, expand the receptive field, capturing broader contextual information essential for accurate segmentation. Additionally, the Transformer blocks within our architecture address CNN limitations in capturing long-range dependencies by modeling complex spatial relationships through multi-head self-attention mechanisms. We assess our model's performance on the Ischemic Stroke Lesion Segmentation Challenge 2015 (SISS 2015) and ISLES 2022 datasets. In the testing phase, the model achieves a Dice coefficient of 0.80 ± 0.30 on SISS 2015 and 0.81 ± 0.33 on ISLES 2022, surpassing the current state-of-the-art results on these datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变压器dl - denseunet:一种先进的行程分割体系结构。
我们提出了一种新的架构,Transformer dl - denseunet,旨在解决在MRI图像中准确分割脑卒中病变的挑战。精确分割对于诊断和治疗中风患者至关重要,因为它提供了对受影响的大脑区域和损伤程度的关键空间洞察。传统的人工分割是劳动密集型的,而且容易出错,这突出了对自动化解决方案的需求。我们的Transformer dl - denseunet结合了DenseNet,扩展卷积和Transformer块,每个块都有独特的优势来提高分割精度。DenseNet组件通过利用密集连接捕获细粒度的细节和全局特性,从而提高精度和特性重用。在每个DenseNet模块之前放置的扩展卷积块扩展了接受野,捕获了准确分割所必需的更广泛的上下文信息。此外,我们架构中的Transformer块通过多头自注意机制建模复杂的空间关系,解决了CNN在捕获远程依赖关系方面的限制。我们评估了我们的模型在2015年缺血性卒中病变分割挑战(SISS 2015)和ISLES 2022数据集上的性能。在测试阶段,该模型在iss 2015上的Dice系数为0.80±0.30,在ISLES 2022上的Dice系数为0.81±0.33,超过了目前在这些数据集上的最先进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
An Efficient Forest Smoke Detection Approach Using Convolutional Neural Networks and Attention Mechanisms. Direct Distillation: A Novel Approach for Efficient Diffusion Model Inference. Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting. Non-Hospitalized Long COVID Patients Exhibit Reduced Retinal Capillary Perfusion: A Prospective Cohort Study. Unraveling the Role of PET in Cervical Cancer: Review of Current Applications and Future Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1