Ana-Maria Tătaru, Alexandra Canciu, Alin-Dan Chiorean, Ioana Runcan, Alexandru Radu, Mădălina Adriana Bordea, Maria Suciu, Mihaela Tertiș, Andreea Cernat, Cecilia Cristea
{"title":"Competitive Electrochemical Apta-Assay Based on cDNA-Ferrocene and MXenes for <i>Staphylococcus aureus</i> Surface Protein A Detection.","authors":"Ana-Maria Tătaru, Alexandra Canciu, Alin-Dan Chiorean, Ioana Runcan, Alexandru Radu, Mădălina Adriana Bordea, Maria Suciu, Mihaela Tertiș, Andreea Cernat, Cecilia Cristea","doi":"10.3390/bios14120636","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>) represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. <i>S. aureus</i> can cause a large variety of diseases. Protein A (PrA) is a cell-wall-anchored protein of <i>S. aureus</i> with multiple key roles in colonization and pathogenesis and can be considered as a marker of <i>S. aureus</i>. The development of aptasensors, having an aptamer as a specific biorecognition element, increases selectivity, especially when working with complex matrices. The association with state-of-the-art materials, such as MXenes, can further improve the analytical performance. A competitive aptasensor configuration based on a ferrocene (Fc)-labeled cDNA hybridized (cDNA-Fc S13) on a specific aptamer (APT) for PrA in the presence of MXene nanosheets was designed for the indirect detection of <i>S. aureus</i>. The aptasensor displayed a linear range of 10-125 nM, an LOD of 3.33 nM, and a response time under 40 min. This configuration has been tested in real samples from volunteers diagnosed with <i>S. aureus</i> infections with satisfactory results, enabling the perspective to develop decentralized devices for the rapid detection of bacterial strains.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 12","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14120636","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus (S. aureus) represents one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. It is a part of the infamous ESKAPE group, which is highly connected with increased rates of healthcare-associated infections and antimicrobial resistance. S. aureus can cause a large variety of diseases. Protein A (PrA) is a cell-wall-anchored protein of S. aureus with multiple key roles in colonization and pathogenesis and can be considered as a marker of S. aureus. The development of aptasensors, having an aptamer as a specific biorecognition element, increases selectivity, especially when working with complex matrices. The association with state-of-the-art materials, such as MXenes, can further improve the analytical performance. A competitive aptasensor configuration based on a ferrocene (Fc)-labeled cDNA hybridized (cDNA-Fc S13) on a specific aptamer (APT) for PrA in the presence of MXene nanosheets was designed for the indirect detection of S. aureus. The aptasensor displayed a linear range of 10-125 nM, an LOD of 3.33 nM, and a response time under 40 min. This configuration has been tested in real samples from volunteers diagnosed with S. aureus infections with satisfactory results, enabling the perspective to develop decentralized devices for the rapid detection of bacterial strains.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.