The impact of simultaneous infections on phage-host ecology.

IF 1.2 4区 生物学 Q4 ECOLOGY Theoretical Population Biology Pub Date : 2024-12-24 DOI:10.1016/j.tpb.2024.12.002
Jaye Sudweeks, Christoph Hauert
{"title":"The impact of simultaneous infections on phage-host ecology.","authors":"Jaye Sudweeks, Christoph Hauert","doi":"10.1016/j.tpb.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><p>Phages use bacterial host resources to replicate, intrinsically linking phage and host survival. To understand phage dynamics, it is essential to understand phage-host ecology. A key step in this ecology is infection of bacterial hosts. Previous work has explored single and multiple, sequential infections. Here we focus on the theory of simultaneous infections, where multiple phages simultaneously attach to and infect one bacterial host cell. Simultaneous infections are a relevant infection dynamic to consider, especially at high phage densities when many phages attach to a single host cell in a short time window. For high bacterial growth rates, simultaneous infection can result in bi-stability: depending on initial conditions phages go extinct or co-exist with hosts, either at stable densities or through periodic oscillations of a stable limit cycle. This bears important consequences for phage applications such as phage therapy: phages can persist even though they cannot invade. Consequently, through spikes in phage densities it is possible to infect a bacterial population even when the phage basic reproductive number is less than one. In the regime of stable limit cycles, if timed right, only small densities of phage may be necessary.</p>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":" ","pages":"42-49"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tpb.2024.12.002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phages use bacterial host resources to replicate, intrinsically linking phage and host survival. To understand phage dynamics, it is essential to understand phage-host ecology. A key step in this ecology is infection of bacterial hosts. Previous work has explored single and multiple, sequential infections. Here we focus on the theory of simultaneous infections, where multiple phages simultaneously attach to and infect one bacterial host cell. Simultaneous infections are a relevant infection dynamic to consider, especially at high phage densities when many phages attach to a single host cell in a short time window. For high bacterial growth rates, simultaneous infection can result in bi-stability: depending on initial conditions phages go extinct or co-exist with hosts, either at stable densities or through periodic oscillations of a stable limit cycle. This bears important consequences for phage applications such as phage therapy: phages can persist even though they cannot invade. Consequently, through spikes in phage densities it is possible to infect a bacterial population even when the phage basic reproductive number is less than one. In the regime of stable limit cycles, if timed right, only small densities of phage may be necessary.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
期刊最新文献
Effect of competition on emergent phases and phase transitions in competitive systems. Catching a wave: On the suitability of traveling-wave solutions in epidemiological modeling. Editorial. The impact of simultaneous infections on phage-host ecology. Stochastic offspring distributions amplify selection bias in mutation accumulation experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1