首页 > 最新文献

Theoretical Population Biology最新文献

英文 中文
Joint identity among loci under mutation and regular inbreeding 变异和正常近亲繁殖情况下基因位点间的共同特性
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-08-30 DOI: 10.1016/j.tpb.2024.08.002

This study describes a compact method for determining joint probabilities of identity-by-state (IBS) within and between loci in populations evolving under genetic drift, crossing-over, mutation, and regular inbreeding (partial self-fertilization). Analogues of classical indices of associations among loci arise as functions of these joint identities. This coalescence-based analysis indicates that multi-locus associations reflect simultaneous coalescence events across loci. Measures of association depend on genetic diversity rather than allelic frequencies, as do linkage disequilibrium and its relatives. Scaled indices designed to show monotonic dependence on rates of crossing-over, inbreeding, and mutation may prove useful for interpreting patterns of genome-scale variation.

本研究描述了一种简洁的方法,用于确定在遗传漂移、杂交、突变和常规近交(部分自交)条件下进化的种群中基因位点内和基因位点间的联合同态概率(IBS)。基因位点间关联的经典指数类似于这些联合特征的函数。这种基于凝聚的分析表明,多基因位点关联反映了各基因位点之间同时发生的凝聚事件。关联度的测量依赖于遗传多样性而非等位基因频率,这一点与连锁不平衡及其近亲一样。旨在显示对杂交率、近交率和变异率的单调依赖性的标度指数可能有助于解释基因组范围的变异模式。
{"title":"Joint identity among loci under mutation and regular inbreeding","authors":"","doi":"10.1016/j.tpb.2024.08.002","DOIUrl":"10.1016/j.tpb.2024.08.002","url":null,"abstract":"<div><p>This study describes a compact method for determining joint probabilities of identity-by-state (IBS) within and between loci in populations evolving under genetic drift, crossing-over, mutation, and regular inbreeding (partial self-fertilization). Analogues of classical indices of associations among loci arise as functions of these joint identities. This coalescence-based analysis indicates that multi-locus associations reflect simultaneous coalescence events across loci. Measures of association depend on genetic diversity rather than allelic frequencies, as do linkage disequilibrium and its relatives. Scaled indices designed to show monotonic dependence on rates of crossing-over, inbreeding, and mutation may prove useful for interpreting patterns of genome-scale variation.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of spawning and settlement of reef fishes as strategic responses to post-settlement competition 珊瑚礁鱼类的产卵和定居模式是对定居后竞争的战略反应。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-08-23 DOI: 10.1016/j.tpb.2024.08.001

Settlement is a critical transition in the life history of reef fish, and the timing of this event can have a strong effect on fitness. Key factors that influence settlement timing are predictable lunar cyclic variation in tidal currents, moonlight, and nocturnal predation risk as larvae transition from pelagic to benthic environments. However, populations typically display wide variation in the arrival of settlers over the lunar cycle. This variation is often hypothesized to result from unpredictable conditions in the pelagic environment and bet-hedging by spawning adults. Here, we consider the hypothesis that the timing of spawning and settlement is a strategic response to post-settlement competition. We use a game theoretic model to predict spawning and settlement distributions when fish face a tradeoff between minimizing density-independent predation risk while crossing the reef crest vs. avoiding high competitor density on settlement habitat. In general, we expect competition to spread spawning over time such that settlement is distributed around the lunar phase with the lowest predation risk, similar to an ideal free distribution in which competition spreads competitors across space. We examine the effects of overcompensating density dependence, age-dependent competition, and competition among daily settler cohorts. Our model predicts that even in the absence of stochastic variation in the larval environment, competition can result in qualitative divergence between spawning and settlement distributions. Furthermore, we show that if competitive strength increases with settler age, competition results in covariation between settler age and settlement date, with older larvae settling when predation risk is minimal. We predict that competition between daily cohorts delays peak settlement, with priority effects potentially selecting for a multimodal settlement distribution.

沉降是珊瑚礁鱼类生活史中的一个关键转变,而这一事件的发生时间会对适应性产生很大影响。影响定居时间的关键因素是潮汐流、月光和幼体从浮游环境过渡到底栖环境时夜间捕食风险的可预测月周期变化。然而,种群中定居者的到来时间通常在月周期中表现出很大的差异。这种变化通常被认为是由于浮游环境中不可预测的条件和产卵成体的对冲造成的。在这里,我们考虑的假设是,产卵和定居的时间是对定居后竞争的策略性反应。我们利用博弈论模型来预测当鱼类在穿越礁峰时面临最大限度降低与密度无关的捕食风险与避免定居栖息地上高密度竞争者之间的权衡时,产卵和定居的分布情况。一般来说,我们预计竞争会使产卵在时间上分散,从而使定居分布在捕食风险最低的月相附近,这类似于理想的自由分布,即竞争会使竞争者在空间上分散。我们研究了过度补偿密度依赖性、年龄依赖性竞争以及每日定居者群组间竞争的影响。我们的模型预测,即使在幼虫环境没有随机变化的情况下,竞争也会导致产卵和定居分布之间出现质的差异。此外,我们还表明,如果竞争强度随定居者年龄的增加而增加,竞争就会导致定居者年龄与定居日期之间的协变,年龄较大的幼虫会在捕食风险最小时定居。我们预测,每日同群之间的竞争会推迟定居高峰期,优先效应可能会选择多模式定居分布。
{"title":"Patterns of spawning and settlement of reef fishes as strategic responses to post-settlement competition","authors":"","doi":"10.1016/j.tpb.2024.08.001","DOIUrl":"10.1016/j.tpb.2024.08.001","url":null,"abstract":"<div><p>Settlement is a critical transition in the life history of reef fish, and the timing of this event can have a strong effect on fitness. Key factors that influence settlement timing are predictable lunar cyclic variation in tidal currents, moonlight, and nocturnal predation risk as larvae transition from pelagic to benthic environments. However, populations typically display wide variation in the arrival of settlers over the lunar cycle. This variation is often hypothesized to result from unpredictable conditions in the pelagic environment and bet-hedging by spawning adults. Here, we consider the hypothesis that the timing of spawning and settlement is a strategic response to post-settlement competition. We use a game theoretic model to predict spawning and settlement distributions when fish face a tradeoff between minimizing density-independent predation risk while crossing the reef crest vs. avoiding high competitor density on settlement habitat. In general, we expect competition to spread spawning over time such that settlement is distributed around the lunar phase with the lowest predation risk, similar to an ideal free distribution in which competition spreads competitors across space. We examine the effects of overcompensating density dependence, age-dependent competition, and competition among daily settler cohorts. Our model predicts that even in the absence of stochastic variation in the larval environment, competition can result in qualitative divergence between spawning and settlement distributions. Furthermore, we show that if competitive strength increases with settler age, competition results in covariation between settler age and settlement date, with older larvae settling when predation risk is minimal. We predict that competition between daily cohorts delays peak settlement, with priority effects potentially selecting for a multimodal settlement distribution.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Duality and the well-posedness of a martingale problem 对偶性与马氏问题的良好提出性
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-08-21 DOI: 10.1016/j.tpb.2024.07.003

For two Polish state spaces EX and EY, and an operator GX, we obtain existence and uniqueness of a GX-martingale problem provided there is a bounded continuous duality function H on EX×EY together with a dual process Y on EY which is the unique solution of a GY-martingale problem. For the corresponding solutions (Xt)t0 and (Yt)t0, duality with respect to a function H in its simplest form means that the relation Ex[H(Xt,y)]=Ey[H(x,Yt)] holds for all (x,y)EX×EY and t0. While duality is well-known to imply uniqueness of the GX-martingale problem, we give here a set of conditions under which duality also implies existence without using approximating sequences of processes of a different kind (e.g. jump processes to approximate diffusions) which is a widespread strategy for proving existence of solutions of martingale problems. Given the process (Yt)t0

对于两个波兰状态空间 EX 和 EY 以及一个算子 GX,只要在 EX×EY 上存在一个有界连续对偶函数 H 以及在 EY 上存在一个对偶过程 Y,且该过程是 GY-鞅问题的唯一解,我们就能得到 GX-鞅问题的存在性和唯一性。对于相应的解[公式:见正文]和[公式:见正文],关于函数 H 的对偶性的最简单形式是指对于所有 (x,y)∈EX×EY 且 t≥0 的关系 Ex[H(Xt,y)]=Ey[H(x,Yt)]成立。众所周知,对偶性意味着 GX-马汀厄尔问题的唯一性,我们在此给出一组条件,在这些条件下,对偶性也意味着存在性,而无需使用另一种过程的近似序列(例如近似扩散的跃迁过程),这是证明马汀厄尔问题解的存在性的一种普遍策略。给定过程[公式:见正文]和对偶函数 H,要证明[公式:见正文]的存在性,必须证明对偶关系的 r.h.s. 为每个 y 定义了 EX 上的一个度量,即存在从 EX 到 EX 的过渡核[公式:见正文],对于所有 (x,y)∈EX×EY 和所有 t≥0,Ey[H(x,Yt)]=∫μt(x,dx')H(x',y)。作为示例,我们处理了重采样和分支模型,如弗莱明-维奥特(Fleming-Viot)度量值扩散及其空间对应模型(包括离散空间和连续空间),以及分支系统,如费勒的分支扩散。虽然我们的主要结果和所有例子都涉及(局部)紧凑状态空间,但我们讨论了将我们的结果提升到谱系值过程或历史过程的策略,从而导致非紧凑(离散和连续)状态空间。在本文的基础上,我们将在接下来的工作中讨论这类应用。
{"title":"Duality and the well-posedness of a martingale problem","authors":"","doi":"10.1016/j.tpb.2024.07.003","DOIUrl":"10.1016/j.tpb.2024.07.003","url":null,"abstract":"<div><p>For two Polish state spaces <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, and an operator <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>, we obtain existence and uniqueness of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem provided there is a bounded continuous duality function <span><math><mi>H</mi></math></span> on <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> together with a dual process <span><math><mi>Y</mi></math></span> on <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span> which is the unique solution of a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>-martingale problem. For the corresponding solutions <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, duality with respect to a function <span><math><mi>H</mi></math></span> in its simplest form means that the relation <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>]</mo></mrow><mo>=</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>[</mo><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span> holds for all <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>Y</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. While duality is well-known to imply uniqueness of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span>-martingale problem, we give here a set of conditions under which duality also implies existence without using approximating sequences of processes of a different kind (e.g. jump processes to approximate diffusions) which is a widespread strategy for proving existence of solutions of martingale problems. Given the process <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></mat","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000765/pdfft?md5=3a0d0ba95ef090a854236fc78278e994&pid=1-s2.0-S0040580924000765-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One hundred years of influenza A evolution 甲型流感百年演变史
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-31 DOI: 10.1016/j.tpb.2024.07.005

Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A ‘nonstructural’ (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic “backbone” of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The rooted Hamming map of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.

利用核苷酸错配分布的简单性,我们为人类甲型流感 "非结构"(NS)基因片段的进化提供了一个直观的窗口。根据丹麦著名生物学家弗雷迪-克里斯蒂安森(Freddy B. Christiansen)提出的分析建议,我们说明了甲型流感 NS 序列存在一个连续的遗传 "主干",一个多世纪以来与 1918 年根的核苷酸距离稳步增加。2009 年甲型 H1N1 流感大流行明显偏离了这一持久的基因主干。利用核苷酸距离图和系统发生学分析,我们说明了 2009 年流感大流行起源方面仍然存在的不确定性,凸显了流感进化的复杂性。NS片段之所以引人关注,正是因为它经历的正向选择较少,与HA抗原等相比,偏离中性进化的程度较低。因此,突然偏离中性的多样化可通过搭便车效应表明其他基因发生了变化。我们的方法采用了两种基于核苷酸错配计数的方法来分析 NS 基因片段的进化动态。一种是参考序列与所有其他序列之间随时间变化的有根汉明图,另一种是捕捉同时流行的病毒之间基因型距离分布的无根时间汉明分布,从而揭示核苷酸多样性和外显子进化动态的模式。
{"title":"One hundred years of influenza A evolution","authors":"","doi":"10.1016/j.tpb.2024.07.005","DOIUrl":"10.1016/j.tpb.2024.07.005","url":null,"abstract":"<div><p>Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A ‘nonstructural’ (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic “backbone” of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The <em>rooted Hamming map</em> of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wright–Fisher graph model and the impact of directional selection on genetic variation 赖特-费舍图模型和定向选择对遗传变异的影响。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-15 DOI: 10.1016/j.tpb.2024.07.004

We introduce a multi-allele Wright–Fisher model with mutation and selection such that allele frequencies at a single locus are traced by the path of a hybrid jump–diffusion process. The state space of the process is given by the vertices and edges of a topological graph, i.e. edges are unit intervals. Vertices represent monomorphic population states and positions on the edges mark the biallelic proportions of ancestral and derived alleles during polymorphic segments. In this setting, mutations can only occur at monomorphic loci. We derive the stationary distribution in mutation–selection–drift equilibrium and obtain the expected allele frequency spectrum under large population size scaling. For the extended model with multiple independent loci we derive rigorous upper bounds for a wide class of associated measures of genetic variation. Within this framework we present mathematically precise arguments to conclude that the presence of directional selection reduces the magnitude of genetic variation, as constrained by the bounds for neutral evolution.

我们引入了一个具有突变和选择的多等位基因赖特-费舍模型,该模型通过混合跳跃-扩散过程的路径来追踪单个位点的等位基因频率。该过程的状态空间由拓扑图的顶点和边给出,即边是单位间隔。顶点代表单态种群状态,边上的位置代表多态区段中祖先和衍生等位基因的双等位基因比例。在这种情况下,突变只能发生在单态位点上。我们推导出了突变-选择-漂移平衡中的静态分布,并得到了大种群规模缩放下的预期等位基因频率谱。对于具有多个独立基因座的扩展模型,我们推导出了一系列相关遗传变异度量的严格上限。在这一框架内,我们提出了精确的数学论据,从而得出结论:定向选择的存在会降低遗传变异的幅度,这受到中性进化界限的限制。
{"title":"A Wright–Fisher graph model and the impact of directional selection on genetic variation","authors":"","doi":"10.1016/j.tpb.2024.07.004","DOIUrl":"10.1016/j.tpb.2024.07.004","url":null,"abstract":"<div><p>We introduce a multi-allele Wright–Fisher model with mutation and selection such that allele frequencies at a single locus are traced by the path of a hybrid jump–diffusion process. The state space of the process is given by the vertices and edges of a topological graph, i.e. edges are unit intervals. Vertices represent monomorphic population states and positions on the edges mark the biallelic proportions of ancestral and derived alleles during polymorphic segments. In this setting, mutations can only occur at monomorphic loci. We derive the stationary distribution in mutation–selection–drift equilibrium and obtain the expected allele frequency spectrum under large population size scaling. For the extended model with multiple independent loci we derive rigorous upper bounds for a wide class of associated measures of genetic variation. Within this framework we present mathematically precise arguments to conclude that the presence of directional selection reduces the magnitude of genetic variation, as constrained by the bounds for neutral evolution.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000777/pdfft?md5=c7ea20aafbe501d42760b57841f9e368&pid=1-s2.0-S0040580924000777-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean-field interacting multi-type birth–death processes with a view to applications in phylodynamics 平均场相互作用的多类型生死过程在系统动力学中的应用。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-15 DOI: 10.1016/j.tpb.2024.07.002

Multi-type birth–death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth–death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes – such as environmental carrying capacity or frequency-dependent selection – entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth–death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble’s stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth–death model.

从深时物种宏观进化到快速病毒进化和体细胞增殖,多种类型的出生-死亡过程是从系统发育树推断跨生物尺度进化动态的基础方法。目前的系统发育出生-死亡模型的局限性在于,它们需要限制性的线性假设,这些假设可以产生可控的信息传递可能性,但也排除了个体之间的相互作用。许多基本的进化过程--如环境承载力或频率依赖性选择--都包含相互作用,并可能对某些系统的动力学产生重大影响。在这里,我们引入了一个多类型的出生-死亡过程,该过程与焦点过程的集合复制发生均场相互作用。我们证明,在相当一般的条件下,在无限集合的极限中,集合随机演化的相互作用场会收敛到确定性轨迹。在这一极限中,复制品有效解耦,自洽的相互作用作为非线性出现在焦点过程的无限小发生器中。我们研究了一个特例,它的丰富程度足以模拟承载能力和频率依赖性选择,同时在系统发育出生-死亡模型的背景下产生可处理的信息传递似然。
{"title":"Mean-field interacting multi-type birth–death processes with a view to applications in phylodynamics","authors":"","doi":"10.1016/j.tpb.2024.07.002","DOIUrl":"10.1016/j.tpb.2024.07.002","url":null,"abstract":"<div><p>Multi-type birth–death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth–death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes – such as environmental carrying capacity or frequency-dependent selection – entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth–death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble’s stochastically evolving interaction field converges to a <em>deterministic</em> trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth–death model.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000753/pdfft?md5=449649d0ee10fbb5ed718ac4824a76ef&pid=1-s2.0-S0040580924000753-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial invasion of cooperative parasites 合作寄生虫的空间入侵。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-09 DOI: 10.1016/j.tpb.2024.07.001

In this paper we study invasion probabilities and invasion times of cooperative parasites spreading in spatially structured host populations. The spatial structure of the host population is given by a random geometric graph on [0,1]n, nN, with a Poisson(N)-distributed number of vertices and in which vertices are connected over an edge when they have a distance of at most rN with rN of order N(β1)/n for some 0<β<1. At a host infection many parasites are generated and parasites move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower and upper bounds on the invasion probability of the parasites in terms of survival probabilities of branching processes with cooperation. Furthermore, we characterize the asymptotic invasion time.

An important ingredient of the proofs is a comparison with infection dynamics of cooperative parasites in host populations structured according to a complete graph, i.e. in well-mixed host populations. For these infection processes we can show that invasion probabilities are asymptotically equal to survival probabilities of branching processes with cooperation. Furthermore, we build on proof techniques developed in Brouard and Pokalyuk (2022), where an analogous invasion process has been studied for host populations structured according to a configuration model.

We substantiate our results with simulations.

本文研究了在空间结构宿主种群中传播的合作寄生虫的入侵概率和入侵时间。宿主种群的空间结构由[0,1]n, n∈N 上的随机几何图给出,图中顶点的数量是泊松(N)分布的,当顶点之间的距离最多为 rN 时,它们通过边相连,rN 的阶数为 N(β-1)/n,对于某个 0
{"title":"Spatial invasion of cooperative parasites","authors":"","doi":"10.1016/j.tpb.2024.07.001","DOIUrl":"10.1016/j.tpb.2024.07.001","url":null,"abstract":"<div><p>In this paper we study invasion probabilities and invasion times of cooperative parasites spreading in spatially structured host populations. The spatial structure of the host population is given by a random geometric graph on <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, with a Poisson<span><math><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span>-distributed number of vertices and in which vertices are connected over an edge when they have a distance of at most <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> with <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of order <span><math><msup><mrow><mi>N</mi></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></msup></math></span> for some <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. At a host infection many parasites are generated and parasites move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower and upper bounds on the invasion probability of the parasites in terms of survival probabilities of branching processes with cooperation. Furthermore, we characterize the asymptotic invasion time.</p><p>An important ingredient of the proofs is a comparison with infection dynamics of cooperative parasites in host populations structured according to a complete graph, i.e. in well-mixed host populations. For these infection processes we can show that invasion probabilities are asymptotically equal to survival probabilities of branching processes with cooperation. Furthermore, we build on proof techniques developed in Brouard and Pokalyuk (2022), where an analogous invasion process has been studied for host populations structured according to a configuration model.</p><p>We substantiate our results with simulations.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000686/pdfft?md5=7baf961ab53e2f51f9344de949b836db&pid=1-s2.0-S0040580924000686-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal variability can promote migration between habitats 时间变化可促进栖息地之间的迁移。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.tpb.2024.06.005
Harman Jaggi , David Steinsaltz , Shripad Tuljapurkar

Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many ( 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.

了解促进迁移进化的条件在生态学和进化论中非常重要。当环境固定且存在一个最有利的地点时,向其他地点迁移会降低整体生长率,因而不被看好。在这里,我们要问的是,当平均只有一个最佳地点时,环境变异是否有利于迁移?以前的研究表明答案是肯定的,但一个普遍而精确的答案仍然难以捉摸。在这里,我们建立了新的、严格的不等式,以显示(并使用模拟来说明)当不同地点的适应性(不)优势随时间波动时,随机增长率如何随着迁移而增加。不同地点之间的迁移对总体随机增长率的影响取决于预期增长率的差异和增长率波动差异的方差。当波动(方差)较大时,一个种群可以从平均增长率较低的地点的突发高增长中获益。随着地点间差异的增大,这种突发性增长的可能性也会增大。我们的结果适用于许多(≥ 2)地点,并揭示了地点间路径长度、地点特定增长率的平均差异和波动大小之间的相互作用。我们的发现对进化生物学和生态动力学都有意义,因为它们为偏离还原原则提供了条件:即使在一片贫瘠的栖息地中存在优越的地点,空间的变异性和栖息地的质量也决定了迁移的重要性。
{"title":"Temporal variability can promote migration between habitats","authors":"Harman Jaggi ,&nbsp;David Steinsaltz ,&nbsp;Shripad Tuljapurkar","doi":"10.1016/j.tpb.2024.06.005","DOIUrl":"10.1016/j.tpb.2024.06.005","url":null,"abstract":"<div><p>Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many (<span><math><mo>≥</mo></math></span> 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host control and species interactions jointly determine microbiome community structure 宿主控制和物种相互作用共同决定了微生物群落结构。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.tpb.2024.06.006
Eeman Abbasi, Erol Akçay

The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.

宿主微生物组可被视为存在于复杂多变的宿主环境中的微生物生态群落。宿主受到选择性压力,以确保其微生物群保持有益状态。宿主可以施加一系列生态过滤器,包括影响微生物群落组装和组成的免疫反应。宿主的免疫反应如何与微生物群落内部的动态相互作用,从而影响微生物群落的组装,这在很大程度上还没有被探索。我们在此提出一个数学框架,以阐明宿主免疫反应的作用及其与微生物群落内生态相互作用类型平衡的相互作用。我们发现,以高群落密度为特征的高度互利性微生物群落最容易受到免疫控制变化的影响,并随着宿主免疫控制强度的增加而变得容易受到入侵。而高度竞争性群落在抵御宿主免疫控制变化的入侵方面保持相对稳定。我们的模型揭示了宿主免疫控制可以以意想不到的方式与微生物群落相互作用,这取决于该群落的普遍生态相互作用类型。我们强调有必要纳入宿主控制机制的作用,以更好地理解微生物群落的组装和稳定性。
{"title":"Host control and species interactions jointly determine microbiome community structure","authors":"Eeman Abbasi,&nbsp;Erol Akçay","doi":"10.1016/j.tpb.2024.06.006","DOIUrl":"10.1016/j.tpb.2024.06.006","url":null,"abstract":"<div><p>The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unifying quantification methods for sexual selection and assortative mating using information theory 利用信息论统一性选择和同类交配的量化方法。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-23 DOI: 10.1016/j.tpb.2024.06.007
A. Carvajal-Rodríguez

Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.

In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.

Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).

It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.

性选择在现代进化理论中起着至关重要的作用,它为了解进化模式和物种多样性提供了宝贵的见解。最近,有人对性选择提出了一个全面的定义,将其界定为在获得受精配子的竞争中与非随机成功相关的适应性差异所产生的任何选择。以前对离散性状的研究表明,非随机交配可以通过杰弗里斯(或对称库尔贝克-莱伯勒)分歧有效地量化,从而捕捉到受相互交配倾向影响而不是随机发生的交配所获得的信息。这种新颖的理论框架可用于检测和评估性选择和同类交配的强度。在这项研究中,我们旨在实现两个主要目标。首先,我们证明了之前以信息论和相互交配倾向为基础的理论发展与上述性选择定义的无缝对接。其次,我们将这一理论扩展到数量性状。我们的研究结果表明,通过测量相对于随机交配模式的信息增益,性选择和同配可以有效地量化数量性状。性选择的信息指数与性选择的经典测量方法之间的联系已经建立。此外,如果交配性状是正态分布的,则捕捉同类交配基本信息的测量值是相关系数平方的函数,取值范围是非负实数集[0,+∞]。值得注意的是,相同的分歧度量可以捕捉到离散性状和数量性状通过交配获得的信息。这一点很有意思,因为它提供了一个共同的背景,有助于简化性选择模式的研究。
{"title":"Unifying quantification methods for sexual selection and assortative mating using information theory","authors":"A. Carvajal-Rodríguez","doi":"10.1016/j.tpb.2024.06.007","DOIUrl":"10.1016/j.tpb.2024.06.007","url":null,"abstract":"<div><p>Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.</p><p>In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.</p><p>Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).</p><p>It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000650/pdfft?md5=a22dea1ed5eeb299ff36e9cf8734d81b&pid=1-s2.0-S0040580924000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical Population Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1