Larissa Nicholas, Aisling Devine, Iain Robertson, Ian Mabbett
{"title":"The Effect of Biochar on Tomato (<i>Solanum lycopersicum</i>) Cultivar Micro-Tom Grown under Continuous Light.","authors":"Larissa Nicholas, Aisling Devine, Iain Robertson, Ian Mabbett","doi":"10.1007/s42729-024-02003-5","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous lighting (CL) has the potential to increase crop yield in greenhouse production. Tomato plants, however, when exposed to CL develop inter-vascular chlorosis, a leaf injury which causes a reduction in chlorophyll content and necrosis. The application of biochar can reduce physiological stress in plants, we examine if biochar also reduces necrosis in tomatoes when grown under CL. Faecal sludge biochar was applied to an acidic soil to examine plant growth and yield in Micro-Tom tomato plants grown under continuous light. We examined soil and plant growth properties of three soil application treatments: a control soil, biochar treatment (4%w/w) (Biochar), and a combined biochar (2% w/w) and fertilizer (2% w/w) treatment (Biochar + Fert). Faecal sludge biochar addition produced plant heights 216% greater than control and above ground biomass 583% greater than control. The biochar and fertilizer treatment group produced a 487% increase in leaf number compared to biochar. The combined biochar and fertilizer treatment produced a 398% increase in dried above ground biomass and a 177% increase in dried fruit yield compared with biochar. Plants in the biochar and fertilizer treatment group showed less visual evidence of continuous light induced leaf injury.Biochar addition did not limit continuous light induced leaf chlorosis whereas combined biochar and fertilizer treatment resulted in a significant reduction in leaf injury and death. Overall, the application of biochar and biochar and fertilizer combined increased crop yield.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42729-024-02003-5.</p>","PeriodicalId":49023,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"24 4","pages":"6775-6781"},"PeriodicalIF":3.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-02003-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous lighting (CL) has the potential to increase crop yield in greenhouse production. Tomato plants, however, when exposed to CL develop inter-vascular chlorosis, a leaf injury which causes a reduction in chlorophyll content and necrosis. The application of biochar can reduce physiological stress in plants, we examine if biochar also reduces necrosis in tomatoes when grown under CL. Faecal sludge biochar was applied to an acidic soil to examine plant growth and yield in Micro-Tom tomato plants grown under continuous light. We examined soil and plant growth properties of three soil application treatments: a control soil, biochar treatment (4%w/w) (Biochar), and a combined biochar (2% w/w) and fertilizer (2% w/w) treatment (Biochar + Fert). Faecal sludge biochar addition produced plant heights 216% greater than control and above ground biomass 583% greater than control. The biochar and fertilizer treatment group produced a 487% increase in leaf number compared to biochar. The combined biochar and fertilizer treatment produced a 398% increase in dried above ground biomass and a 177% increase in dried fruit yield compared with biochar. Plants in the biochar and fertilizer treatment group showed less visual evidence of continuous light induced leaf injury.Biochar addition did not limit continuous light induced leaf chlorosis whereas combined biochar and fertilizer treatment resulted in a significant reduction in leaf injury and death. Overall, the application of biochar and biochar and fertilizer combined increased crop yield.
Supplementary information: The online version contains supplementary material available at 10.1007/s42729-024-02003-5.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.