Performance investigation of MVMD-MSI algorithm in frequency recognition for SSVEP-based brain-computer interface and its application in robotic arm control.
{"title":"Performance investigation of MVMD-MSI algorithm in frequency recognition for SSVEP-based brain-computer interface and its application in robotic arm control.","authors":"Rongrong Fu, Shaoxiong Niu, Xiaolei Feng, Ye Shi, Chengcheng Jia, Jing Zhao, Guilin Wen","doi":"10.1007/s11517-024-03236-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on improving the performance of steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs) for robotic control systems. The challenge lies in effectively reducing the impact of artifacts on raw data to enhance the performance both in quality and reliability. The proposed MVMD-MSI algorithm combines the advantages of multivariate variational mode decomposition (MVMD) and multivariate synchronization index (MSI). Compared to widely used algorithms, the novelty of this method is its capability of decomposing nonlinear and non-stationary EEG signals into intrinsic mode functions (IMF) across different frequency bands with the best center frequency and bandwidth. Therefore, SSVEP decoding performance can be improved by this method, and the effectiveness of MVMD-MSI is evaluated by the robot with 6 degrees-of-freedom. Offline experiments were conducted to optimize the algorithm's parameters, resulting in significant improvements. Additionally, the algorithm showed good performance even with fewer channels and shorter data lengths. In online experiments, the algorithm achieved an average accuracy of 98.31% at 1.8 s, confirming its feasibility and effectiveness for real-time SSVEP BCI-based robotic arm applications. The MVMD-MSI algorithm, as proposed, represents a significant advancement in SSVEP analysis for robotic control systems. It enhances decoding performance and shows promise for practical application in this field.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03236-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on improving the performance of steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs) for robotic control systems. The challenge lies in effectively reducing the impact of artifacts on raw data to enhance the performance both in quality and reliability. The proposed MVMD-MSI algorithm combines the advantages of multivariate variational mode decomposition (MVMD) and multivariate synchronization index (MSI). Compared to widely used algorithms, the novelty of this method is its capability of decomposing nonlinear and non-stationary EEG signals into intrinsic mode functions (IMF) across different frequency bands with the best center frequency and bandwidth. Therefore, SSVEP decoding performance can be improved by this method, and the effectiveness of MVMD-MSI is evaluated by the robot with 6 degrees-of-freedom. Offline experiments were conducted to optimize the algorithm's parameters, resulting in significant improvements. Additionally, the algorithm showed good performance even with fewer channels and shorter data lengths. In online experiments, the algorithm achieved an average accuracy of 98.31% at 1.8 s, confirming its feasibility and effectiveness for real-time SSVEP BCI-based robotic arm applications. The MVMD-MSI algorithm, as proposed, represents a significant advancement in SSVEP analysis for robotic control systems. It enhances decoding performance and shows promise for practical application in this field.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).