{"title":"Temporal and Fronto-Central Auditory Evoked Responses in Children with Neurodevelopmental Disorders: A Scoping Review.","authors":"Zohreh Ahmadi, Fauve Duquette-Laplante, Shanna Kousaie, Benjamin Rich Zendel, Amineh Koravand","doi":"10.3390/neurosci5040048","DOIUrl":null,"url":null,"abstract":"<p><p>At the cortical level, the central auditory neural system (CANS) includes primary and secondary areas. So far, much research has focused on recording fronto-central auditory evoked potentials/responses (P1-N1-P2), originating mainly from the primary auditory areas, to explore the neural processing in the auditory cortex. However, less is known about the secondary auditory areas. This review aimed to investigate and compare fronto-central and T-complex responses in populations at risk of auditory dysfunction, such as individuals with neurodevelopmental disorders. After searching the electronic databases (PubMed, Web of Science, Scopus, and Ovid), ten studies encompassing six neurodevelopmental disorders were included for the analysis. All experimental populations had atypical T-complexes, manifesting as an absence of evoked responses, shorter latency, and/or smaller amplitude. Moreover, in two experimental groups, dyslexia and attention deficit/hyperactivity disorder (ADHD), abnormal T-complex responses were observed despite the presence of normal fronto-central responses. The presence of abnormal T-complex responses in combination with normal fronto-central responses in the same population, using the same experiment, may highlight the advantage of the T-complex for indexing deficits in distinct auditory processes or regions, which the fronto-central response may not track.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"5 4","pages":"674-692"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci5040048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At the cortical level, the central auditory neural system (CANS) includes primary and secondary areas. So far, much research has focused on recording fronto-central auditory evoked potentials/responses (P1-N1-P2), originating mainly from the primary auditory areas, to explore the neural processing in the auditory cortex. However, less is known about the secondary auditory areas. This review aimed to investigate and compare fronto-central and T-complex responses in populations at risk of auditory dysfunction, such as individuals with neurodevelopmental disorders. After searching the electronic databases (PubMed, Web of Science, Scopus, and Ovid), ten studies encompassing six neurodevelopmental disorders were included for the analysis. All experimental populations had atypical T-complexes, manifesting as an absence of evoked responses, shorter latency, and/or smaller amplitude. Moreover, in two experimental groups, dyslexia and attention deficit/hyperactivity disorder (ADHD), abnormal T-complex responses were observed despite the presence of normal fronto-central responses. The presence of abnormal T-complex responses in combination with normal fronto-central responses in the same population, using the same experiment, may highlight the advantage of the T-complex for indexing deficits in distinct auditory processes or regions, which the fronto-central response may not track.