Multicenter comparative analysis of local and aggregated data training strategies in COVID-19 outcome prediction with Machine learning.

PLOS digital health Pub Date : 2024-12-26 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000699
Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes, Alexandre Dias Porto Chiavegatto Filho
{"title":"Multicenter comparative analysis of local and aggregated data training strategies in COVID-19 outcome prediction with Machine learning.","authors":"Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes, Alexandre Dias Porto Chiavegatto Filho","doi":"10.1371/journal.pdig.0000699","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers. This study aims to compare data aggregation strategies of several hospitals in Brazil with a local training strategy in each hospital to predict two COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use (MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging from 47 to 1500 patients. Machine learning models were trained using extreme gradient boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies based on hospital geographic regions were compared with local training, and the best strategy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley Additive exPlanations) values were used to assess the contribution of variables to predictions. Additionally, a metafeatures analysis examined how hospital characteristics influence the selection of the best strategy. The study found that the local training strategy was the most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and, in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals with smaller sample sizes generally performed better using an aggregated data strategy compared to local training. Our study brings to light an important concern about the impact of grouping data from different hospitals in predictive machine learning models. These findings contribute to the ongoing debate about the trade-off between increasing sample size and bringing together heterogeneous scenarios.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000699"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) is a promising tool in assisting clinical decision-making for improving diagnosis and prognosis, especially in developing regions. It is often used with large samples, aggregating data from different regions and hospitals. However, it is unclear how this affects predictions in local centers. This study aims to compare data aggregation strategies of several hospitals in Brazil with a local training strategy in each hospital to predict two COVID-19 outcomes: Intensive Care Unit admission (ICU) and mechanical ventilation use (MV). The study included 6,046 patients from 14 hospitals, with local sample sizes ranging from 47 to 1500 patients. Machine learning models were trained using extreme gradient boosting, lightGBM, and catboost for structured data. Seven data aggregation strategies based on hospital geographic regions were compared with local training, and the best strategy was determined by analyzing the area under the ROC curve (AUROC). SHAP (Shapley Additive exPlanations) values were used to assess the contribution of variables to predictions. Additionally, a metafeatures analysis examined how hospital characteristics influence the selection of the best strategy. The study found that the local training strategy was the most effective approach, in the case of ICU outcomes, for 11 of the 14 hospitals (79%), and, in the case of MV, for 10 hospitals (71%). Metafeatures analysis suggested that hospitals with smaller sample sizes generally performed better using an aggregated data strategy compared to local training. Our study brings to light an important concern about the impact of grouping data from different hospitals in predictive machine learning models. These findings contribute to the ongoing debate about the trade-off between increasing sample size and bringing together heterogeneous scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a competency model for telerehabilitation therapists and patients: Results of a cross-sectional online survey. Naïve Bayes is an interpretable and predictive machine learning algorithm in predicting osteoporotic hip fracture in-hospital mortality compared to other machine learning algorithms. Development and evaluation of a low-cost database solution for the Community Paramedicine at Clinic (CP@clinic) database. Multicenter comparative analysis of local and aggregated data training strategies in COVID-19 outcome prediction with Machine learning. A cluster randomized trial assessing the effect of a digital health algorithm on quality of care in Tanzania (DYNAMIC study).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1