Reconsidering the selectivity of bulk autophagy: cargo hitchhiking specifies cargo for degradation.

Eigo Takeda, Alexander I May, Yoshinori Ohsumi
{"title":"Reconsidering the selectivity of bulk autophagy: cargo hitchhiking specifies cargo for degradation.","authors":"Eigo Takeda, Alexander I May, Yoshinori Ohsumi","doi":"10.1080/15548627.2024.2447209","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to isolate cytosolic components for degradation in a non-selective manner. Despite the fundamental nature of the eukaryotic degradation pathway, the question of what cargo is isolated by autophagy has remained unaddressed for over 30 years. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies. In the process of these experiments, we uncovered Hab1 (Highly enriched in Autophagic Bodies 1), a novel protein that is delivered extremely preferentially via autophagy. We report that Hab1 is a novel receptor protein, the N-terminus of which binds Atg8-PE, whereas the C-terminus binds ribosomes. Surprisingly, detailed biochemical and microscopic analyses revealed that ribosome-bound Hab1 is preferentially delivered to the vacuole by \"'hitchhiking'\" on phagophores/isolation membranes that form during bulk autophagy. This is a completely different mechanism of cargo selection that differs from previous descriptions of selective autophagy, in which the cargo-specific receptor proteins initiate phagophore membrane formation via scaffold proteins such as Atg11. We propose that cargo hitchhiking allows for the specification of cargo during bulk autophagy, which is otherwise a non-selective process.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2447209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to isolate cytosolic components for degradation in a non-selective manner. Despite the fundamental nature of the eukaryotic degradation pathway, the question of what cargo is isolated by autophagy has remained unaddressed for over 30 years. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies. In the process of these experiments, we uncovered Hab1 (Highly enriched in Autophagic Bodies 1), a novel protein that is delivered extremely preferentially via autophagy. We report that Hab1 is a novel receptor protein, the N-terminus of which binds Atg8-PE, whereas the C-terminus binds ribosomes. Surprisingly, detailed biochemical and microscopic analyses revealed that ribosome-bound Hab1 is preferentially delivered to the vacuole by "'hitchhiking'" on phagophores/isolation membranes that form during bulk autophagy. This is a completely different mechanism of cargo selection that differs from previous descriptions of selective autophagy, in which the cargo-specific receptor proteins initiate phagophore membrane formation via scaffold proteins such as Atg11. We propose that cargo hitchhiking allows for the specification of cargo during bulk autophagy, which is otherwise a non-selective process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新考虑大量自噬的选择性:货物搭便车指定货物降解。
大量巨噬/自噬,通常由饥饿诱导,通常被认为是非选择性地分离细胞质成分进行降解。然而,尚未对散装自噬货物进行详细的分析。我们最近用质谱法分析了分离的自噬体的成分。在这个过程中,我们发现了一种新的蛋白Hab1 (Highly enrichment In Autophagic Bodies 1),它通过自噬优先递送。Hab1是一种受体蛋白,分别在其N端和c端结合Atg8-PE和核糖体。我们发现核糖体结合的Hab1优先通过“搭便车”的方式传递到液泡中,这种方式是在大量自噬过程中形成的吞噬细胞/隔离膜上。这种搭便车机制赋予了自体自噬的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Histone lactylation stimulated upregulation of PSMD14 alleviates neuron PANoptosis through deubiquitinating PKM2 to activate PINK1-mediated mitophagy after traumatic brain injury. Autophagy regulates cellular senescence by mediating the degradation of CDKN1A/p21 and CDKN2A/p16 through SQSTM1/p62-mediated selective autophagy in myxomatous mitral valve degeneration. Establishment of a yeast essential protein conditional-degradation library and screening for autophagy-regulating genes. Mycobacterium bovis Mb3523c protein regulates host ferroptosis via chaperone-mediated autophagy. TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1