Bunty Sharma, Lluïsa Pérez-García, Ganga Ram Chaudhary, Gurpreet Kaur
{"title":"Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications.","authors":"Bunty Sharma, Lluïsa Pérez-García, Ganga Ram Chaudhary, Gurpreet Kaur","doi":"10.1016/j.cis.2024.103380","DOIUrl":null,"url":null,"abstract":"<p><p>Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.</p>","PeriodicalId":93859,"journal":{"name":"Advances in colloid and interface science","volume":"337 ","pages":"103380"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in colloid and interface science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cis.2024.103380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.