Competing mechanisms for the buckling of an epithelial monolayer identified using multicellular simulation

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2025-02-01 DOI:10.1016/j.mbs.2024.109367
Phillip J. Brown , J. Edward F. Green , Benjamin J. Binder , James M. Osborne
{"title":"Competing mechanisms for the buckling of an epithelial monolayer identified using multicellular simulation","authors":"Phillip J. Brown ,&nbsp;J. Edward F. Green ,&nbsp;Benjamin J. Binder ,&nbsp;James M. Osborne","doi":"10.1016/j.mbs.2024.109367","DOIUrl":null,"url":null,"abstract":"<div><div>A model using the rigid body multi-cellular framework (RBMCF) is implemented to investigate the mechanisms of buckling of an epithelial monolayer. Specifically, the deformation of a monolayer of epithelial cells which are attached to a basement membrane and the surrounding stromal tissue. The epithelial monolayer, supporting basement membrane and stromal tissue are modelled using two separate vertex dynamics models (one for the epithelial monolayer layer and one for the basement membrane and stromal tissue combined) and interactions between the two are considered using the RBMCF to ensure biologically realistic interactions. Model simulations are used to investigate the effects of cell–stromal attachment and membrane rigidity on buckling behaviour. We demonstrate that there are two competing modes of buckling, stromal deformation and stromal separation.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"380 ","pages":"Article 109367"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400227X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A model using the rigid body multi-cellular framework (RBMCF) is implemented to investigate the mechanisms of buckling of an epithelial monolayer. Specifically, the deformation of a monolayer of epithelial cells which are attached to a basement membrane and the surrounding stromal tissue. The epithelial monolayer, supporting basement membrane and stromal tissue are modelled using two separate vertex dynamics models (one for the epithelial monolayer layer and one for the basement membrane and stromal tissue combined) and interactions between the two are considered using the RBMCF to ensure biologically realistic interactions. Model simulations are used to investigate the effects of cell–stromal attachment and membrane rigidity on buckling behaviour. We demonstrate that there are two competing modes of buckling, stromal deformation and stromal separation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多细胞模拟鉴定上皮单层屈曲的竞争机制。
采用刚体多细胞框架(RBMCF)模型来研究上皮单层屈曲的机制。具体地说,是附着在基底膜和周围基质组织上的上皮细胞单层的变形。上皮单分子层、支持基底膜和基质组织使用两个单独的顶点动力学模型(一个用于上皮单分子层,另一个用于基底膜和基质组织组合)进行建模,并使用RBMCF考虑两者之间的相互作用,以确保生物学上真实的相互作用。模型模拟用于研究细胞间质附着和膜刚度对屈曲行为的影响。我们证明存在两种相互竞争的屈曲模式,即基质变形和基质分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
Target reproduction numbers for time-delayed population systems Editorial Board Modelling the stochastic importation dynamics and establishment of novel pathogenic strains using a general branching processes framework A simultaneous simulation of human behavior dynamics and epidemic spread: A multi-country study amidst the COVID-19 pandemic Chemotaxis effects on the vascular tumor growth: Phase-field model and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1