Respiratory toxicity of amorphous silica nanoparticles: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-12-30 DOI:10.1007/s10311-024-01787-3
Hailin Xu, Yan Li, Xinying Zhao, Caixia Guo, Yanbo Li
{"title":"Respiratory toxicity of amorphous silica nanoparticles: a review","authors":"Hailin Xu, Yan Li, Xinying Zhao, Caixia Guo, Yanbo Li","doi":"10.1007/s10311-024-01787-3","DOIUrl":null,"url":null,"abstract":"<p>Silica nanoparticles exert detrimental effects on the respiratory system, regardless of the exposure route. The adverse outcome pathway framework has been recently developed in toxicological research to characterize the pathways that lead to harmful outcomes. Here, we review the adverse effects of amorphous silica nanoparticles on respiratory health with focus on underlying mechanisms and influencing factors, using the adverse outcome pathway framework for the first time. We found that the increase in reactive oxygen species levels induces oxidative stress and leads to mitochondrial dysfunction. Molecular changes further lead to cellular alterations such as epithelial injury, macrophage, and fibroblast activation. Respiratory cellular damage further induces inflammation and fibrosis in the lungs and airways.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"161 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01787-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silica nanoparticles exert detrimental effects on the respiratory system, regardless of the exposure route. The adverse outcome pathway framework has been recently developed in toxicological research to characterize the pathways that lead to harmful outcomes. Here, we review the adverse effects of amorphous silica nanoparticles on respiratory health with focus on underlying mechanisms and influencing factors, using the adverse outcome pathway framework for the first time. We found that the increase in reactive oxygen species levels induces oxidative stress and leads to mitochondrial dysfunction. Molecular changes further lead to cellular alterations such as epithelial injury, macrophage, and fibroblast activation. Respiratory cellular damage further induces inflammation and fibrosis in the lungs and airways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Respiratory toxicity of amorphous silica nanoparticles: a review Toxicity and environmental fate of the less toxic chiral neonicotinoid pesticides: a review Inhibition of Escherichia coli by hydrodynamic cavitation discharge plasma for water disinfection suggests the influence of both reactive oxygen species and electroporation Protecting mud crabs from pollution by microplastics, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pesticides, and heavy metals in mangroves Hydrothermal gasification of waste biomass and plastics into hydrogen-rich syngas: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1