{"title":"Sex identification in rainbow trout using genomic information and machine learning","authors":"Andrei A. Kudinov, Antti Kause","doi":"10.1186/s12711-024-00944-0","DOIUrl":null,"url":null,"abstract":"Sex identification in farmed fish is important for the management of fish stocks and breeding programs, but identification based on visual characteristics is typically difficult or impossible in juvenile or premature fish. The amount of genomic data obtained from farmed fish is rapidly growing with the implementation of genomic selection in aquaculture. In comparison to mammals and birds, ray-finned fishes exhibit a greater diversity of sex determination systems, with an absence of conserved genomic regions. A group of genomic markers located on a standard genotyping array has been reported to potentially be linked with sex determination in rainbow trout. However, the set of markers suitable for sex identification may vary between populations. Sex identification from genomic data is usually performed using probabilistic methods, where suitable markers are known beforehand. In our study, we demonstrated the use of the Extreme Gradient Boosting approach from the supervised machine learning gradient boost framework to predict sex from unimputed genomic data, when the suitability of the markers was unknown a priori. The accuracy of the method was assessed using four simulated datasets with different genotyping error rates and one real dataset from the Finnish Rainbow Trout Breeding Program. The method showed high prediction quality on both simulated and real datasets. For simulated datasets with low (5%) and high (50%) genotyping error rates, the accuracies were 1.0 and 0.60, respectively. In the real data, the method achieved a prediction accuracy of 98%, which is suitable for routine use.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"4 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00944-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sex identification in farmed fish is important for the management of fish stocks and breeding programs, but identification based on visual characteristics is typically difficult or impossible in juvenile or premature fish. The amount of genomic data obtained from farmed fish is rapidly growing with the implementation of genomic selection in aquaculture. In comparison to mammals and birds, ray-finned fishes exhibit a greater diversity of sex determination systems, with an absence of conserved genomic regions. A group of genomic markers located on a standard genotyping array has been reported to potentially be linked with sex determination in rainbow trout. However, the set of markers suitable for sex identification may vary between populations. Sex identification from genomic data is usually performed using probabilistic methods, where suitable markers are known beforehand. In our study, we demonstrated the use of the Extreme Gradient Boosting approach from the supervised machine learning gradient boost framework to predict sex from unimputed genomic data, when the suitability of the markers was unknown a priori. The accuracy of the method was assessed using four simulated datasets with different genotyping error rates and one real dataset from the Finnish Rainbow Trout Breeding Program. The method showed high prediction quality on both simulated and real datasets. For simulated datasets with low (5%) and high (50%) genotyping error rates, the accuracies were 1.0 and 0.60, respectively. In the real data, the method achieved a prediction accuracy of 98%, which is suitable for routine use.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.