Discovery of novel capsaicin analogs as TRPV1 inhibitors for the treatment of idiopathic pulmonary fibrosis

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-12-30 DOI:10.1016/j.ejmech.2024.117229
Yu Cao, Yongju Wen, Zongyuan Zhou, Ruiying Xi, Wen Shuai, Jichao Zhang, Apichart Suksamrarn, Guolin Zhang, Xiao-xia Lu, Fei Wang
{"title":"Discovery of novel capsaicin analogs as TRPV1 inhibitors for the treatment of idiopathic pulmonary fibrosis","authors":"Yu Cao, Yongju Wen, Zongyuan Zhou, Ruiying Xi, Wen Shuai, Jichao Zhang, Apichart Suksamrarn, Guolin Zhang, Xiao-xia Lu, Fei Wang","doi":"10.1016/j.ejmech.2024.117229","DOIUrl":null,"url":null,"abstract":"Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease for which few drugs are available in clinical practice. Here, we identified novel capsaicin analogs by combining in-house chemical library screening and further structural optimization. (E)-1-(3,4-dihydroxyphenyl)-7-phenylhept-1-en-3-one (Compound <strong>14)</strong> was found to be the most potent in inhibiting TGF-β-induced collagen accumulation, proliferation and migration in fibroblast cells. Furthermore, compound <strong>14</strong> (IC<sub>50</sub> = 0.51 ± 0.06 μM) showed over 100-fold increasing antifibrotic activity compared to capsaicin (IC<sub>50</sub> = 53.71 ± 4.78 μM). Notably, compound <strong>14</strong> could target TRPV1, thereby affecting the expression of the fibrosis markers Collagen Ⅰ and α-SMA by inhibiting the TGF-β/Smads and MAPK pathways to exert antifibrotic activity <em>in vitro</em>. Compound <strong>14</strong> significantly inhibited collagen deposition in lung tissues, ameliorated alveolar structures, and increased survival rates in mice with bleomycin-induced pulmonary fibrosis. In addition, compound <strong>14</strong> possessed lower cytotoxicity (compared to nitedanib) and no toxicity in mice. Overall, compound <strong>14</strong> promise as a potential drug candidate for the treatment of IPF.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117229","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease for which few drugs are available in clinical practice. Here, we identified novel capsaicin analogs by combining in-house chemical library screening and further structural optimization. (E)-1-(3,4-dihydroxyphenyl)-7-phenylhept-1-en-3-one (Compound 14) was found to be the most potent in inhibiting TGF-β-induced collagen accumulation, proliferation and migration in fibroblast cells. Furthermore, compound 14 (IC50 = 0.51 ± 0.06 μM) showed over 100-fold increasing antifibrotic activity compared to capsaicin (IC50 = 53.71 ± 4.78 μM). Notably, compound 14 could target TRPV1, thereby affecting the expression of the fibrosis markers Collagen Ⅰ and α-SMA by inhibiting the TGF-β/Smads and MAPK pathways to exert antifibrotic activity in vitro. Compound 14 significantly inhibited collagen deposition in lung tissues, ameliorated alveolar structures, and increased survival rates in mice with bleomycin-induced pulmonary fibrosis. In addition, compound 14 possessed lower cytotoxicity (compared to nitedanib) and no toxicity in mice. Overall, compound 14 promise as a potential drug candidate for the treatment of IPF.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Discovery of proteolytically stable monocyte locomotion inhibitory factor peptide through systematic structural optimization Design, synthesis and biological evaluation of novel 1H-indole-3-carbonitrile derivatives as potent TRK Inhibitors Design, Synthesis, and Biological Evaluation of a Potent and Orally Bioavailable FGFRs Inhibitor for Fibrotic Treatment Functional and Structural Polypharmacology of Indazole-based Privileged Ligands to Tackle the Undruggability of Membrane Transporters Synthesis and biological evaluation of novel pyrrolo[2,3-b]pyridine derivatives as potent GSK-3β inhibitors for treating Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1