Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-29 DOI:10.1002/anie.202417105
Yang Feng, Yanpeng Fan, Lingfei Zhao, Jiangtao Yu, Yaqi Liao, Tongrui Zhang, Ruochen Zhang, Haitao Zhu, Xingwei Sun, Zhe Hu, Kai Zhang, Jun Chen
{"title":"Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries","authors":"Yang Feng, Yanpeng Fan, Lingfei Zhao, Jiangtao Yu, Yaqi Liao, Tongrui Zhang, Ruochen Zhang, Haitao Zhu, Xingwei Sun, Zhe Hu, Kai Zhang, Jun Chen","doi":"10.1002/anie.202417105","DOIUrl":null,"url":null,"abstract":"Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li+ conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li+ flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in-situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure. Through the integration of X-ray computed tomography analyses and theoretical simulations, our research identifies that the improvement of microdomain consistency in GPEs is beneficial for enhancing its mechanical strength, homogenizing ionic/electronic field distribution and upgrading the interface stability with the elctrodes. Moreover, consistently spread MOFs bind effectively with Lewis-base anions of Li salts, enhancing Li+ kinetics. Owing to these advantages, the developed GPEs achieve a high conductivity of 1.51 mS cm−1 and a Li+ transference number of 0.66, resulting in exceptional cyclability of lithium metal electrodes (over 1800 hours). Additionally, the solid-state NCM811//Li pouch batteries exhibit an impressive capacity retention of 94.2% over 200 cycles with an N/P ratio of 1.69. This study emphasizes the significant impact of microdomain structural chemistry on the advancement of solid-state batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"162 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li+ conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li+ flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in-situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure. Through the integration of X-ray computed tomography analyses and theoretical simulations, our research identifies that the improvement of microdomain consistency in GPEs is beneficial for enhancing its mechanical strength, homogenizing ionic/electronic field distribution and upgrading the interface stability with the elctrodes. Moreover, consistently spread MOFs bind effectively with Lewis-base anions of Li salts, enhancing Li+ kinetics. Owing to these advantages, the developed GPEs achieve a high conductivity of 1.51 mS cm−1 and a Li+ transference number of 0.66, resulting in exceptional cyclability of lithium metal electrodes (over 1800 hours). Additionally, the solid-state NCM811//Li pouch batteries exhibit an impressive capacity retention of 94.2% over 200 cycles with an N/P ratio of 1.69. This study emphasizes the significant impact of microdomain structural chemistry on the advancement of solid-state batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Chemical O-ADP-Ribosylations: Synthesis and Bioconjugation of ADPr-Peptides/Proteins from NAD+ Reductive Carbon Materials: Tailoring Chemistry and Electronic Properties to Improve Sodium-Ion Batteries Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction Structure-Activity Relationships for s-Block Metal/Co(III) Heterodinuclear Catalysts in Cyclohexene Oxide Ring-Opening Copolymerizations Chlorine-Doped SnO2 Nanoflowers on Nickel Hollow Fiber for Enhanced CO2 Electroreduction at Ampere-level Current Densities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1