Kari E. A. Norman, Perry de Valpine, Carl Boettiger
{"title":"No General Trend in Functional Diversity in Bird and Mammal Communities Despite Compositional Change","authors":"Kari E. A. Norman, Perry de Valpine, Carl Boettiger","doi":"10.1111/geb.13950","DOIUrl":null,"url":null,"abstract":"Despite unprecedented environmental change due to anthropogenic pressure, recent work has found increasing dissimilarity due to turnover but no overall trend in species diversity through time at the local scale. Functional diversity provides a potentially powerful alternative approach for understanding community composition by linking shifts in species identity to the characteristics that underpin ecosystem processes. Here we present the first multitaxa, multisystem analysis of functional diversity and composition through time.","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"323 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/geb.13950","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite unprecedented environmental change due to anthropogenic pressure, recent work has found increasing dissimilarity due to turnover but no overall trend in species diversity through time at the local scale. Functional diversity provides a potentially powerful alternative approach for understanding community composition by linking shifts in species identity to the characteristics that underpin ecosystem processes. Here we present the first multitaxa, multisystem analysis of functional diversity and composition through time.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.