Yuzhen Ge, Zirui Gao, Yao Xu, Ming Xu, Xuetao Qin, Mi Peng, Shuai Wang, Rui Gao, Wu Zhou, Ding Ma
{"title":"Inverting methanol dehydrogenation selectivity by crowding atomic Ni species over α-MoC catalysts","authors":"Yuzhen Ge, Zirui Gao, Yao Xu, Ming Xu, Xuetao Qin, Mi Peng, Shuai Wang, Rui Gao, Wu Zhou, Ding Ma","doi":"10.1002/anie.202423682","DOIUrl":null,"url":null,"abstract":"Metal carbides with earth-abundant elements are widely regarded as promising alternatives of noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H2 is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H2 becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species. Under optimal conditions, excellent selectivities of the target products (> 90%) were achieved in both cases, with unprecedented production rates of methyl formate and H2 for the former and latter mechanisms, respectively. Kinetic, spectroscopic, and computational assessments were integrated to clarify the mechanism driving this remarkable selectivity inversion. Isolated Ni sites bound to α-MoC exhibit superior dehydrogenation activity, which promotes complete cleavage of C-H bonds in methanol-derived intermediates rather than the C-O coupling between them. Our study offers an effective approach to modulating the selectivity of carbide-based catalysts in alcohol dehydrogenation towards different target products.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"3 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423682","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal carbides with earth-abundant elements are widely regarded as promising alternatives of noble metal catalysts. Although comparable catalytic performances have been observed for metal carbides in several types of reactions, precise control of reaction pathways on them remains a formidable challenge, partially due to strong adsorption of reactants or intermediates. In this study, we show that bimolecular dehydrogenation of methanol to methyl formate and H2 is kinetically favored on bare α-MoC catalysts, while monomolecular dehydrogenation to CO and H2 becomes the dominant pathway when α-MoC is decorated with crowding atomic Ni species. Under optimal conditions, excellent selectivities of the target products (> 90%) were achieved in both cases, with unprecedented production rates of methyl formate and H2 for the former and latter mechanisms, respectively. Kinetic, spectroscopic, and computational assessments were integrated to clarify the mechanism driving this remarkable selectivity inversion. Isolated Ni sites bound to α-MoC exhibit superior dehydrogenation activity, which promotes complete cleavage of C-H bonds in methanol-derived intermediates rather than the C-O coupling between them. Our study offers an effective approach to modulating the selectivity of carbide-based catalysts in alcohol dehydrogenation towards different target products.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.