{"title":"Adipose MSCs response to breast cancer cell-derived factors in conditioned media and extracts.","authors":"Fatemeh Sadeghian, Faezeh Kazemi, Ali Pirsadeghi, Fatemeh Asadi, Mahnaz Tashakori, Aliakbar Yousefi-Ahmadipour","doi":"10.1007/s10561-024-10156-x","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between MSCs and cancer cells are complex and multifaceted and have been shown to exhibit both pro-tumor and antitumor effects. This study investigated the effects of conditioned medium (CM) and cell extract (CE) from two different ERα statuses, MCF-7 and MDA-MB-231 breast cancer cell lines, on adipose-derived mesenchymal stem cells (ASCs). Findings showed that CM and CE increased cellular metabolic activity and viability of ASCs, upregulated angiogenic factors VEGF and HIF-1α, and cytokine TGF-β expression levels. However, CM and CE treatment did not significantly affect the clonogenicity of ASCs. In addition, apoptosis-related genes caspase-3 and 9 showed differential expression patterns among the treatment groups. The findings suggest that breast cancer cell-derived factors can modulate the behavior of ASCs, highlighting their potential as a therapeutic tool in breast cancer treatment and tissue regeneration. However, it is essential to consider the potential risks associated with CM and CE treatment on ASCs, as well as the potential recruitment of ASCs by cancer tumors and the risks associated with this recruitment. Further research is needed to elucidate these potential risks and benefits.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 1","pages":"6"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-024-10156-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interactions between MSCs and cancer cells are complex and multifaceted and have been shown to exhibit both pro-tumor and antitumor effects. This study investigated the effects of conditioned medium (CM) and cell extract (CE) from two different ERα statuses, MCF-7 and MDA-MB-231 breast cancer cell lines, on adipose-derived mesenchymal stem cells (ASCs). Findings showed that CM and CE increased cellular metabolic activity and viability of ASCs, upregulated angiogenic factors VEGF and HIF-1α, and cytokine TGF-β expression levels. However, CM and CE treatment did not significantly affect the clonogenicity of ASCs. In addition, apoptosis-related genes caspase-3 and 9 showed differential expression patterns among the treatment groups. The findings suggest that breast cancer cell-derived factors can modulate the behavior of ASCs, highlighting their potential as a therapeutic tool in breast cancer treatment and tissue regeneration. However, it is essential to consider the potential risks associated with CM and CE treatment on ASCs, as well as the potential recruitment of ASCs by cancer tumors and the risks associated with this recruitment. Further research is needed to elucidate these potential risks and benefits.
期刊介绍:
Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas:
basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.