Unsymmetrical salen-based oxido VIV: Synthesis, characterization, biomolecular interactions, and anticancer activity.

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Inorganic Biochemistry Pub Date : 2024-12-25 DOI:10.1016/j.jinorgbio.2024.112818
Deepika Mohapatra, Pratikshya Das Pattanayak, Souvik Chatterjee, Werner Kaminsky, Takahiro Sasamori, Takashi Nakamura, Rupam Dinda
{"title":"Unsymmetrical salen-based oxido V<sup>IV</sup>: Synthesis, characterization, biomolecular interactions, and anticancer activity.","authors":"Deepika Mohapatra, Pratikshya Das Pattanayak, Souvik Chatterjee, Werner Kaminsky, Takahiro Sasamori, Takashi Nakamura, Rupam Dinda","doi":"10.1016/j.jinorgbio.2024.112818","DOIUrl":null,"url":null,"abstract":"<p><p>Three stable oxidovanadium(IV) [V<sup>IV</sup>OL<sup>1-3</sup>] complexes (1-3) were synthesized through the incorporation of unsymmetrical salen ligands (H<sub>2</sub>L<sup>1-3</sup>). All the ligands are synthesized, and their vanadium compounds were thoroughly characterized by CHNS analysis, various spectroscopy methods (IR, UV-Vis, NMR spectroscopy), and HR-ESI-MS. The structures of 1-3 were validated through the single-crystal X-ray analysis. UV-Vis and HR-ESI-MS were used to determine the solution stability of the complexes in the aqueous phase, revealing their stability in aqueous/biological medium. Various spectroscopy techniques were used to study the DNA/BSA binding abilities, and the results indicate that 1-3 shows effective biomolecular interactions. The partition coefficient result indicates that 1-3 are highly hydrophobic and may easily permeate the cells. Finally, the in vitro anticancer properties of 1-3 were determined with two cancerous (HT-29 and A549), and the NIH-3T3 normal cell lines. Among the series, 3 is the most cytotoxic, with IC<sub>50</sub> values of 6.2 ± 0.2 and 5.3 ± 0.4 μM against HT-29 and A549 cell lines respectively. Moreover, the apoptotic cell death mechanism of 1-3 was assessed through DAPI, AO/EB, and double staining apoptosis experiments.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112818"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112818","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Three stable oxidovanadium(IV) [VIVOL1-3] complexes (1-3) were synthesized through the incorporation of unsymmetrical salen ligands (H2L1-3). All the ligands are synthesized, and their vanadium compounds were thoroughly characterized by CHNS analysis, various spectroscopy methods (IR, UV-Vis, NMR spectroscopy), and HR-ESI-MS. The structures of 1-3 were validated through the single-crystal X-ray analysis. UV-Vis and HR-ESI-MS were used to determine the solution stability of the complexes in the aqueous phase, revealing their stability in aqueous/biological medium. Various spectroscopy techniques were used to study the DNA/BSA binding abilities, and the results indicate that 1-3 shows effective biomolecular interactions. The partition coefficient result indicates that 1-3 are highly hydrophobic and may easily permeate the cells. Finally, the in vitro anticancer properties of 1-3 were determined with two cancerous (HT-29 and A549), and the NIH-3T3 normal cell lines. Among the series, 3 is the most cytotoxic, with IC50 values of 6.2 ± 0.2 and 5.3 ± 0.4 μM against HT-29 and A549 cell lines respectively. Moreover, the apoptotic cell death mechanism of 1-3 was assessed through DAPI, AO/EB, and double staining apoptosis experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
期刊最新文献
Corrigendum to "New insights into the O2-sensing mechanism of FixL and other gas sensing heme proteins" [Journal of Inorganic Biochemistry 259 (2024) 112642]. Corrigendum to "Monomeric copper(II) complexes with unsymmetrical salen environment: Synthesis, characterization and study of biological activities" [Journal of Inorganic Biochemistry 253 (2024) 112497]. Corrigendum to "Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: tricky aspects and tips" [Journal of Inorganic Biochemistry 216 (2021) 111305]. Unsymmetrical salen-based oxido VIV: Synthesis, characterization, biomolecular interactions, and anticancer activity. Molecular basis of H2O2/O2.-/.OH discrimination during electrochemical activation of DyP peroxidases: The critical role of the distal residues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1