An insight into recent PM1 aerosol light scattering properties and particle number concentration variabilities at the suburban site ATOLL in Northern France.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-28 DOI:10.1016/j.scitotenv.2024.178190
Lenka Suchánková, Suzanne Crumeyrolle, Eric Bourrianne, Roman Prokeš, Ivan Holoubek, Vladimír Ždímal, Isabelle Chiapello
{"title":"An insight into recent PM<sub>1</sub> aerosol light scattering properties and particle number concentration variabilities at the suburban site ATOLL in Northern France.","authors":"Lenka Suchánková, Suzanne Crumeyrolle, Eric Bourrianne, Roman Prokeš, Ivan Holoubek, Vladimír Ždímal, Isabelle Chiapello","doi":"10.1016/j.scitotenv.2024.178190","DOIUrl":null,"url":null,"abstract":"<p><p>Aerosol particles in the PM<sub>1</sub> fraction considerably influence the climate-related effects of aerosols and impact human health despite representing very variable fractions of the total aerosol mass concentration. Aerosol optical measurement techniques (aerosol light scattering) may not be sufficiently effective for detecting all particles in the PM<sub>1</sub> fraction, particularly regarding number concentration. The present study investigates temporal variations of aerosol light scattering properties and particle number concentration (PNC) at different size modes in the PM<sub>1</sub> fraction at the atmospheric site ATOLL (The Atmospheric Observations in Lille), Northern France from January 2018 to February 2023. The total scattering coefficient σ<sub>sp</sub> decreased annually by 6 % and 8 % at 525 and 635 nm, respectively. Maximum annual changes occur in winter and summer seasons with a decrease above 10 % per year. Although the backscattering coefficient (σ<sub>bsp</sub>) at 525 nm significantly decreased in winter, this did not result in a significant overall decline over time. Despite a decrease in aerosol light scattering, PNC exhibited a notable annual increase in concentration of N<sub>20-30 nm</sub> and N<sub>30-60 nm,</sub> which led to an increase in the total N<sub>20-800 nm</sub> size range. N<sub>20-30nm</sub> increased by 10 % annually, with the highest increase by 37 % in spring. Both traffic and photooxidative processes influenced PNCs, underscoring the need for a more comprehensive investigation of the detailed particle number size distribution to assess air quality and the health effects of increased ultrafine PNC at urban/suburban sites in Europe.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178190"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178190","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aerosol particles in the PM1 fraction considerably influence the climate-related effects of aerosols and impact human health despite representing very variable fractions of the total aerosol mass concentration. Aerosol optical measurement techniques (aerosol light scattering) may not be sufficiently effective for detecting all particles in the PM1 fraction, particularly regarding number concentration. The present study investigates temporal variations of aerosol light scattering properties and particle number concentration (PNC) at different size modes in the PM1 fraction at the atmospheric site ATOLL (The Atmospheric Observations in Lille), Northern France from January 2018 to February 2023. The total scattering coefficient σsp decreased annually by 6 % and 8 % at 525 and 635 nm, respectively. Maximum annual changes occur in winter and summer seasons with a decrease above 10 % per year. Although the backscattering coefficient (σbsp) at 525 nm significantly decreased in winter, this did not result in a significant overall decline over time. Despite a decrease in aerosol light scattering, PNC exhibited a notable annual increase in concentration of N20-30 nm and N30-60 nm, which led to an increase in the total N20-800 nm size range. N20-30nm increased by 10 % annually, with the highest increase by 37 % in spring. Both traffic and photooxidative processes influenced PNCs, underscoring the need for a more comprehensive investigation of the detailed particle number size distribution to assess air quality and the health effects of increased ultrafine PNC at urban/suburban sites in Europe.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Evaluating efficiency in water and sewerage services: An integrated DEA approach with DOE and PCA. Targeted prevention strategy: Exploring the interaction effect of environmental and social factors on infectious diseases. Winter-spring droughts exacerbated PM2.5-O3 compound pollution? Evidence from China. Unraveling the drivers of optimal stomatal behavior in global C3 plants: A carbon isotope perspective. Exploring the spatial heterogeneity of soil organic carbon and the influence of coastal factors: A case study in the Yellow River Delta, China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1