Cleaner cuts: Farmed fish and skin-off fillets are lower in per- and polyfluoroalkyl substances (PFAS).

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-28 DOI:10.1016/j.scitotenv.2024.178266
Guillermo Figueroa-Muñoz, Christina A Murphy, Kory Whittum, Joseph Zydlewski
{"title":"Cleaner cuts: Farmed fish and skin-off fillets are lower in per- and polyfluoroalkyl substances (PFAS).","authors":"Guillermo Figueroa-Muñoz, Christina A Murphy, Kory Whittum, Joseph Zydlewski","doi":"10.1016/j.scitotenv.2024.178266","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitous occurrence and persistence of per- and polyfluoroalkyl substances (PFAS) in all environmental matrices and biota poses significant health risks to humans. Fish consumption is one of the main pathways humans are exposed to PFAS, yet general patterns in factors influencing PFAS content in fish fillets remain unknown. We assembled information on PFAS content (total quantified PFAS, PFOS, PFOA, and others) in fish fillets to assess the effect of fish origin (marine, freshwater, wild, or farmed), fillet type (skin-on or skin-off), and lipid content on PFAS variation across environments at a global scale. We found that these factors influenced PFAS contents in fish fillets, with concentrations reaching up to 2149 ng•g wet mass<sup>-1</sup> (WM). Specifically, PFOS and PFOA in skin-off fillets were consistently lower in farmed than wild fish across freshwater and marine environments. In freshwater wild fish, PFOS was lower in skin-off fillets than skin-on fillets at group and species levels, and multiple PFAS showed an inverse relationship with the lipid content of skin-off fillets, though the slopes showed varying steepness depending on the carbon chain length and functional group of the PFAS. However, the high variability of PFAS content across sites in aquatic environments and the complexity of PFAS bioaccumulation mechanisms in fish tissues may lead to variable results at a fine scale (i.e., species level); this highlights general patterns of factors influencing PFAS bioaccumulation that may inform the management of human exposure to PFAS through dietary consumption.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178266"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178266","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquitous occurrence and persistence of per- and polyfluoroalkyl substances (PFAS) in all environmental matrices and biota poses significant health risks to humans. Fish consumption is one of the main pathways humans are exposed to PFAS, yet general patterns in factors influencing PFAS content in fish fillets remain unknown. We assembled information on PFAS content (total quantified PFAS, PFOS, PFOA, and others) in fish fillets to assess the effect of fish origin (marine, freshwater, wild, or farmed), fillet type (skin-on or skin-off), and lipid content on PFAS variation across environments at a global scale. We found that these factors influenced PFAS contents in fish fillets, with concentrations reaching up to 2149 ng•g wet mass-1 (WM). Specifically, PFOS and PFOA in skin-off fillets were consistently lower in farmed than wild fish across freshwater and marine environments. In freshwater wild fish, PFOS was lower in skin-off fillets than skin-on fillets at group and species levels, and multiple PFAS showed an inverse relationship with the lipid content of skin-off fillets, though the slopes showed varying steepness depending on the carbon chain length and functional group of the PFAS. However, the high variability of PFAS content across sites in aquatic environments and the complexity of PFAS bioaccumulation mechanisms in fish tissues may lead to variable results at a fine scale (i.e., species level); this highlights general patterns of factors influencing PFAS bioaccumulation that may inform the management of human exposure to PFAS through dietary consumption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Evaluating efficiency in water and sewerage services: An integrated DEA approach with DOE and PCA. Targeted prevention strategy: Exploring the interaction effect of environmental and social factors on infectious diseases. Winter-spring droughts exacerbated PM2.5-O3 compound pollution? Evidence from China. Unraveling the drivers of optimal stomatal behavior in global C3 plants: A carbon isotope perspective. Exploring the spatial heterogeneity of soil organic carbon and the influence of coastal factors: A case study in the Yellow River Delta, China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1