Tuning steric hindrance of cyclic ether electrolytes enables high-voltage lithium metal batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-16 DOI:10.1016/j.jcis.2024.12.102
Jiahang Zou, Hanxu Yang, Shilin Wu, Zhengquan Xiao, Zhipeng Jiang, Wangqiang Shen, Yongtao Li
{"title":"Tuning steric hindrance of cyclic ether electrolytes enables high-voltage lithium metal batteries.","authors":"Jiahang Zou, Hanxu Yang, Shilin Wu, Zhengquan Xiao, Zhipeng Jiang, Wangqiang Shen, Yongtao Li","doi":"10.1016/j.jcis.2024.12.102","DOIUrl":null,"url":null,"abstract":"<p><p>Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether. The results show that the introduction of methyl groups can effectively inhibit the ring-opening polymerization of DOL. Besides, 4-methyl-1,3-dioxolane (4-Me DOL), with larger steric hindrance compared to 2-methyl-1,3-dioxolane (2-Me DOL), exhibits weaker solvation ability, favoring the formation of anion-rich inner solvation sheath layers and anion-derived interfaces. Even at conventional concentrations, 1 M LiFSI in 4-Me DOL (LiFSI/4-Me DOL) electrolyte demonstrates good LMA stability and an expanded electrochemical window up to 4.6 V. The Li-LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NCM523) cell using LiFSI/4-Me DOL could stably cycle over 300 times. This work reveals a new design principle for solvent molecules.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 2","pages":"281-290"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether. The results show that the introduction of methyl groups can effectively inhibit the ring-opening polymerization of DOL. Besides, 4-methyl-1,3-dioxolane (4-Me DOL), with larger steric hindrance compared to 2-methyl-1,3-dioxolane (2-Me DOL), exhibits weaker solvation ability, favoring the formation of anion-rich inner solvation sheath layers and anion-derived interfaces. Even at conventional concentrations, 1 M LiFSI in 4-Me DOL (LiFSI/4-Me DOL) electrolyte demonstrates good LMA stability and an expanded electrochemical window up to 4.6 V. The Li-LiNi0.5Co0.2Mn0.3O2 (NCM523) cell using LiFSI/4-Me DOL could stably cycle over 300 times. This work reveals a new design principle for solvent molecules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节循环醚电解质的位阻可以实现高压锂金属电池。
醚基电解质因其对锂金属阳极(LMA)的高稳定性而闻名,但它们通常表现出较低的高压稳定性。醚基溶剂分子的结构优化已被证明可有效拓宽这些电解质的电化学窗口,但环醚的优化规则仍不清楚。在此,我们研究了甲基取代位置对常用环醚--1,3-二氧戊环(DOL)分子特性的影响。结果表明,甲基的引入能有效抑制 DOL 的开环聚合。此外,与 2-甲基-1,3-二氧戊环(2-Me DOL)相比,4-甲基-1,3-二氧戊环(4-Me DOL)具有更大的立体阻碍,其溶解能力较弱,有利于形成富含阴离子的内溶鞘层和阴离子衍生界面。使用 LiFSI/4-Me DOL 的锂镍 0.5Co0.2Mn0.3O2 (NCM523) 电池可稳定循环 300 次以上。这项研究揭示了一种新的溶剂分子设计原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
1,3-dioxolane (DOL)
阿拉丁
Deuterated chloroform-d (CDCl3)
阿拉丁
Polyvinylidene fluoride (PVDF)
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1