Xinming Zhang, Yuxin Cao, Mengge Wang, Yujia Li, Hanxiao Yin, Hua Ni, Song Yang, Fan Yu, Jia Yang, Lisu Peng, Meilin Hu, Dengwen Li, Dayong Liu
{"title":"Primary Cilia Regulate the Homeostasis and Regeneration of the Stem Cell Niche in the Tooth","authors":"Xinming Zhang, Yuxin Cao, Mengge Wang, Yujia Li, Hanxiao Yin, Hua Ni, Song Yang, Fan Yu, Jia Yang, Lisu Peng, Meilin Hu, Dengwen Li, Dayong Liu","doi":"10.1002/jcp.31517","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31517","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Primary cilia, functioning as crucial hubs for signal sensing and transduction, are integral to the development and maintenance of homeostasis across various organs. However, their roles in tooth homeostasis and repair remain inadequately understood. In this study, we reveal an indispensable role for primary cilia in regulating the homeostasis and regeneration of teeth, primarily through the regulation of cell proliferation. Using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis leads to abnormal tooth morphology, stunted growth and notably impaired tooth repair. RNA sequencing reveals a dysregulation in genes associated with various biological processes such as cell proliferation, differentiation, and cycle regulation. Furthermore, we show that cilium-deficient mice display reduced cell proliferation. Our findings highlight a critical function for primary cilia in the regulation of tooth homeostasis and regeneration and have important implications for the development of tooth regeneration therapies.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.