Water-Mediated Proton Hopping Mechanisms at the SnO2(110)/H2O Interface from Ab Initio Deep Potential Molecular Dynamics.

Precision Chemistry Pub Date : 2024-09-18 eCollection Date: 2024-12-23 DOI:10.1021/prechem.4c00056
Mei Jia, Yong-Bin Zhuang, Feng Wang, Chao Zhang, Jun Cheng
{"title":"Water-Mediated Proton Hopping Mechanisms at the SnO<sub>2</sub>(110)/H<sub>2</sub>O Interface from Ab Initio Deep Potential Molecular Dynamics.","authors":"Mei Jia, Yong-Bin Zhuang, Feng Wang, Chao Zhang, Jun Cheng","doi":"10.1021/prechem.4c00056","DOIUrl":null,"url":null,"abstract":"<p><p>The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO<sub>2</sub>(110)/H<sub>2</sub>O interface as an example of an oxide with the characteristic of frequently interfacial PT processes. Three types of PT pathways among the interfacial groups are found, i.e., proton transfer from terminal adsorbed water to bridge oxygen directly (surface-PT) or via a solvent water (mediated-PT), and proton hopping between two terminal groups (adlayer PT). Our simulations reveal that the terminal water in mediated-PT prefers to point toward the solution and forms a shorter H-bond with the assisted solvent water, leading to the lowest energy barrier and the fastest relative PT rate. In particular, it is found that the full solvation environment plays a crucial role in water-mediated proton conduction, while having little effect on direct PT reactions. The PT mechanisms on aqueous rutile oxide interfaces are also discussed by comparing an oxide series composed of SnO<sub>2</sub>, TiO<sub>2</sub>, and IrO<sub>2</sub>. Consequently, this work provides valuable insights into the ability of a deep neural network to reproduce the ab initio potential energy surface, as well as the PT mechanisms at such oxide/liquid interfaces, which can help understand the important chemical processes in electrochemistry, photoelectrocatalysis, colloid science, and geochemistry.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 12","pages":"644-654"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.4c00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO2(110)/H2O interface as an example of an oxide with the characteristic of frequently interfacial PT processes. Three types of PT pathways among the interfacial groups are found, i.e., proton transfer from terminal adsorbed water to bridge oxygen directly (surface-PT) or via a solvent water (mediated-PT), and proton hopping between two terminal groups (adlayer PT). Our simulations reveal that the terminal water in mediated-PT prefers to point toward the solution and forms a shorter H-bond with the assisted solvent water, leading to the lowest energy barrier and the fastest relative PT rate. In particular, it is found that the full solvation environment plays a crucial role in water-mediated proton conduction, while having little effect on direct PT reactions. The PT mechanisms on aqueous rutile oxide interfaces are also discussed by comparing an oxide series composed of SnO2, TiO2, and IrO2. Consequently, this work provides valuable insights into the ability of a deep neural network to reproduce the ab initio potential energy surface, as well as the PT mechanisms at such oxide/liquid interfaces, which can help understand the important chemical processes in electrochemistry, photoelectrocatalysis, colloid science, and geochemistry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从头算深势分子动力学研究SnO2(110)/H2O界面上水介导的质子跳跃机制
金属氧化物表面的界面质子转移(PT)反应是光电催化水裂解、脱氢和储氢等许多化学过程的重要步骤。从热力学和动力学的角度对PT过程进行了研究,但对不同PT途径在氧化金红石上的个体自由能垒和溶剂效应的研究仍然缺乏。本文采用从头算和深势分子动力学相结合的方法,以金红石SnO2(110)/H2O为例,研究了具有频繁界面PT过程特征的氧化物的界面PT机理。在界面基团之间发现了三种类型的PT途径,即质子从末端吸附水直接转移到桥氧(表面-PT)或通过溶剂水(介质-PT),质子在两个末端基团之间跳跃(adlayer PT)。模拟结果表明,介质PT中的末端水倾向于指向溶液,并与辅助溶剂水形成较短的氢键,导致能量势垒最低,相对PT速率最快。特别是,我们发现全溶剂化环境在水介导的质子传导中起着至关重要的作用,而对直接PT反应的影响很小。通过比较SnO2、TiO2和IrO2组成的氧化物系列,讨论了PT在金红石氧化物界面上的作用机理。因此,这项工作为深度神经网络重现从头计算势能表面的能力提供了有价值的见解,以及在这种氧化物/液体界面上的PT机制,这可以帮助理解电化学、光电催化、胶体科学和地球化学中的重要化学过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Precision in Sensing Precision in Sensing. Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1