Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-12-27 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae184
Zefeng Wu, Yali Sun, Xiaoqiang Zhao, Zigang Liu, Wenqi Zhou, Yining Niu
{"title":"Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets.","authors":"Zefeng Wu, Yali Sun, Xiaoqiang Zhao, Zigang Liu, Wenqi Zhou, Yining Niu","doi":"10.1093/nargab/lqae184","DOIUrl":null,"url":null,"abstract":"<p><p>Research on the dynamic expression of genes in plants is important for understanding different biological processes. We used the large amounts of transcriptomic data from various plant sample sources that are publicly available to investigate whether the expression levels of a subset of highly variable genes (HVGs) can be used to accurately identify the phenotypes of plants. Using maize (<i>Zea mays</i> L.) as an example, we built machine learning (ML) models to predict phenotypes using a gene expression dataset of 21 612 bulk RNA sequencing samples. We showed that the ML models achieved excellent prediction accuracy using only the HVGs to identify different phenotypes, including tissue types, developmental stages, cultivars and stress conditions. By ML models, several important functional genes were found to be associated with different phenotypes. We performed a similar analysis in rice (<i>Orzya sativa</i> L.) and found that the ML models could be generalized across species. However, the models trained from maize did not perform well in rice, probably because of the expression divergence of the conserved HVGs between the two species. Overall, our results provide an ML framework for phenotype prediction using gene expression profiles, which may contribute to precision management of crops in agricultural practices.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae184"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on the dynamic expression of genes in plants is important for understanding different biological processes. We used the large amounts of transcriptomic data from various plant sample sources that are publicly available to investigate whether the expression levels of a subset of highly variable genes (HVGs) can be used to accurately identify the phenotypes of plants. Using maize (Zea mays L.) as an example, we built machine learning (ML) models to predict phenotypes using a gene expression dataset of 21 612 bulk RNA sequencing samples. We showed that the ML models achieved excellent prediction accuracy using only the HVGs to identify different phenotypes, including tissue types, developmental stages, cultivars and stress conditions. By ML models, several important functional genes were found to be associated with different phenotypes. We performed a similar analysis in rice (Orzya sativa L.) and found that the ML models could be generalized across species. However, the models trained from maize did not perform well in rice, probably because of the expression divergence of the conserved HVGs between the two species. Overall, our results provide an ML framework for phenotype prediction using gene expression profiles, which may contribute to precision management of crops in agricultural practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1